УДК 549.02+552.13

РЕНИТ В РАСПЛАВНЫХ ВКЛЮЧЕНИЯХ ИЗ ОЛИВИНА АЛЛИВАЛИТОВЫХ НОДУЛЕЙ ВУЛКАНА МАЛЫЙ СЕМЯЧИК И БАЗАЛЬТОВ ВУЛКАНА КЛЮЧЕВСКОЙ (КАМЧАТКА)

© 2011 г. В. В. Ананьев¹, О. Б. Селянгин²

¹ Институт вулканологии и сейсмологии ДВО РАН 683006 Петропавловск-Камчатский, бульвар Пийпа, 9 e-mail: avv@kscnet.ru

² Научно-исследовательский геотехнологический центр ДВО РАН 683002 Петропавловск-Камчатский, Северо-восточное шоссе, 30 Поступила в редакцию 13.09.2010 г.

При микрозондовом изучении оливинов алливалитовых нодулей из лав вулкана Малый Семячик и фенокристаллов оливина из базальтов вулкана Ключевской в качестве минерала-узника впервые обнаружен ренит. Ренит представлен мелкими (10–50 мк) зернами, ксеноморфными в срастаниях с другими минералами, и с правильными кристаллографическими очертаниями в контактах со стеклом. В парагенезисе с ренитом встречены высокоглиноземистые клинопироксен, безхромовая шпинель, роговая обманка. Остаточное стекло отличается повышенным содержанием SiO₂, Al₂O₃, щелочей и пониженными содержаниями FeO, MgO и CaO. Химический состав изученного ренита характеризуется ограниченными вариациями основных компонентов и хорошо рассчитывается на формулу (Si, Al)₆(Ti, Al, Fe⁺³, Fe⁺², Mn, Mg)₆(Ca, Na)₂O₂₀. Фигуративные точки составов исследованных ренитов ложатся в общее поле гораздо более вариативных составов минерала, встречаемых в природе. В отличие от предыдущих находок, сделанных в щелочных и субщелочных породах, ренит, описываемый в настоящем сообщении, обнаружен в породах толеитовой и известково-щелочной серий.

ВВЕДЕНИЕ

При микрозондовом изучении оливинов алливалитовых нодулей из лав вулкана Малый Семячик и фенокристаллов оливина из базальтов вулкана Ключевской в качестве минерала-узника обнаружен ренит.

Ренит – силикат, минерал группы энигматита, получивший свое название от массива Рен (Германия). Он обладает триклинной сингонией и характеризуется общей формулой – $X_2Y_6Z_6O_{20}$, где X = Na, K, Ca; Y = Ti, ^{VI}Al, ^{VI}Fe⁺³, Fe⁺², Mn, Mg; Z = Si, ^{IV}Al, ^{IV}Fe⁺³. Ренит встречается как редкий минерал в качестве субфенокристаллов и микролитов в щелочных базальтах, тешенитах, лимбургитах, тефритах, фонолитах, а также как продукт замещения ксенокристов амфибола и как интерстициальная фаза сложенных им ксенолитов. В состав характерных для него минеральных ассоциаций входят титан-авгит, керсутит, диопсид, форстерит, шпинель, перовскит, магнезиоферрит, титаномагнетит [Mineral ..., 2001]. Как минерал-узник в расплавных включениях ренит описан в оливинах базанитов Северо-Минусинской впадины и южного Израиля [Тимина и др., 2006; Шарыгин, 2002], в пироксенах из лунного грунта, доставленного станцией Луна-24 [Treiman, 2008], и пироксенах массива Хоут Лор (Haute Loire), Франция [Babkine et al., 1964]. Наиболее полные обзоры по рениту представлены в [Johnston, Stout, 1985; Sharygin et al., 2007].

Ренит обнаружен нами при изучении расплавных микровключений в оливинах из оливин-анортитовых (Ol-An) включений (алливалитов) в непрерывно дифференцированном потоке (от базальтов до андезитов) вулкана Малый Семячик [Селянгин, 1979] и базальтах прорыва Предсказанный, Ключевского вулкана [Хренов и др., 1985]. ОІ-Ап включения состоят из грубозернистых агрегатов оливина (Fo₇₅₋₈₀) и анортита (An_{90–95}) с признаками расслоенности и переходами к эвкритам. Размеры зерен оливина достигают 5 мм, анортита – до 10 мм. В интерстициях между ними часто присутствует некоторое количество остаточного расплава, обычно раскристаллизованного в мелкозернистый пористый долеритоподобный агрегат [Селянгин, 1979]. Ренитсодержащие оливины высокоглиноземистых базальтов прорыва Предсказанный имеют состав Fo₈₄₋₈₆, размеры до 2.5 см и, возможно, являются ксенокристаллами [Хренов и др., 1985] или продуктами дезинтеграции родственных лавам глубинных куммулатов.

Расплавные микровключения имеют эллипсоидальную или неправильную форму, размеры от первых микрон до 0.2–0.3 мм, обычно частично раскристаллизованы. Среди минералов-узников встречаются высокоглиноземистые клинопирок-

№ обр.	LS16	LS20	LS26-28	KL119-3	KL119-5				
Кол-во анализов	3	6	17	2	2				
SiO ₂	25.51	25.45	25.78	29.06	26.35				
TiO ₂	5.17	4.82	6.05	3.80	3.19				
Al_2O_3	18.87	18.94	18.54	18.67	17.77				
Fe ₂ O ₃	13.27	12.53	9.64	8.94	17.20				
FeO	13.29	14.02	14.88	17.09	9.53				
MnO	0.18	0.18	0.18	0.17	0.18				
MgO,	11.49	11.36	11.34	10.81	13.34				
CaO	12.56	12.49	12.41	11.82	11.96				
Na ₂ O	0.65	0.45	0.59	0.99	0.75				
Сумма	101.00	100.23	99.42	101.33	100.26				
Формульные количества на 20 атомов кислорода									
Si	3.4096	3.4299	3.4908	3.8470	3.5157				
Ti	0.5198	0.4882	0.6159	0.3779	0.3196				
Al	2.9735	3.0091	2.9595	2.9128	2.7953				
Fe ⁺³	1.3352	1.2711	0.9827	0.8902	1.7272				
Fe ⁺²	1.4850	1.5797	1.6850	1.8918	1.0640				
Mn	0.0204	0.0204	0.0205	0.0183	0.0208				
Mg	2.2895	2.2813	2.2892	2.1327	2.6541				
Ca	1.7993	1.8041	1.8007	1.6765	1.7101				
Na	0.1676	0.1163	0.1556	0.2528	0.1932				
Mg#	0.61	0.59	0.58	0.53	0.71				
Сумма	14.0000	14.0000	14.0000	14.0000	14.0000				

Таблица 1. Средние составы ренита

Таблица 2. Расчетные формулы ренита

№ обр.	Формула
LS16	$(Si, {}^{IV}Al)_6(Ti, {}^{VI}Al, Fe^{+3}, Fe^{+2}, Mn, Mg)_{6.03}(Ca, Na)_{1.97}O_{20}$
LS20	$(Si, {}^{IV}Al)_6(Ti, {}^{VI}Al, Fe^{+3}, Fe^{+2}, Mn, Mg)_{6.08}(Ca, Na)_{1.92}O_{20}$
LS26-28	$(Si, {}^{IV}Al)_6(Ti, {}^{VI}Al, Fe^{+3}, Fe^{+2}, Mn, Mg)_{6.04}(Ca, Na)_{1.96}O_{20}$
KL119-3	$(Si, {}^{IV}Al)_6(Ti, {}^{VI}Al, Fe^{+3}, Fe^{+2}, Mn, Mg)_{6.07}(Ca, Na)_{1.93}O_{20}$
KL119-5	$(Si, {}^{IV}Al)_6(Ti, {}^{VI}Al, Fe^{+3}, Fe^{+2}, Mn, Mg)_{6.10}(Ca, Na)_{1.90}O_{20}$

сены, шпинели, амфиболы и ренит. Стекло включений часто пронизано тончайшими дендритами минералов и содержит пузырьки газовой фазы.

Ренит представлен мелкими (10—50 мк) зернами, ксеноморфными в срастаниях с другими минералами, и с правильными кристаллографическими очертаниями в контактах со стеклом (рис. 1). При весьма значительном количестве изученных расплавных включений, ренит встречен лишь в немногих из них.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Химический состав изученного ренита (табл. 1) отличается ограниченными вариациями (Si, Al)₆(Ti, Al, Fe⁺³, Fe⁺², Mn, Mg)₆(Ca, Na)₂O₂₀, (табл. 2). Фигуративные точки составов исследованных ренитов ложатся в общее поле гораздо более вариативных составов минерала, встречаемых в природе [Johnston, Stout, 1985] (рис. 2).

Клинопироксены наблюдаются либо в мелких кристаллах, либо в каймах обрастания по границе

(д) 100 мк

01

Рис. 1. Микрозондовые фотографии ренитсодержащих расплавных включений.

а – обр. LS16, б – обр. LS20, в – обр. LS26-28, г – обр. КL119-3, д – обр. КL119-5.

Ol – оливин, Срх – клинопироксен, Hb – роговая обманка, Sp – шпинель, Rn – ренит, Gl – стекло, Ру – пирит, bubble – газовый пузырек. Изображения в обратнорассеянных электронах. Фото а, б, д дополнительно обработаны с целью выделения границ минеральных фаз.

Рис. 2. График зависимости Na + Si от ^{VIII}Ca + ^{IV}Al для природновстречаемых ренитов и энигматитов в соответствии с [Johnston, Stout, 1985].

оливин-расплав. Характерной особенностью этих пироксенов является их высокая глиноземистость, достигающая иногда 16-17% Al₂O₃, низкое содержание кремнекислоты (до 38%), повышенное содержание титана. В ранних работах одного из авторов [Ананьев, 1985; Ананьев, Шнырев, 1984] подобные высокоглиноземистые фазы с весьма низким содержанием SiO₂ (38%) были интерпретированы как гранаты вследствии невозможности их оптического изучения. По стехиометрии же такие пироксены и гранаты неразличимы: расчет показывает практически полное соответствие состава этих фаз формуле граната Si₆(Ti, Al, Fe⁺³)₄(Mg, Fe⁺², Ca)₆O₂₄. Однако, подобные пироксены встречены и в расплавных включениях, не содержащих ренита, в целом образуя непрерывный тренд составов с концентрацией Al_2O_3 от 3% до 17%, и комплементарными ему вариациями содержания SiO₂, которые гранатам не свойственны. Аналогичные пироксены описаны и в работах других авторов [Гриб, Перепелов, 2008; Плечов и др., 2008; Шарыгин, 2002]. Кроме того, столь же высокоглиноземистые (12% Al₂O₃) пироксены описаны как минералы-вкрапленики в базальтах Оверни, Эйфеля, района Осло [Добрецов и др., 1971] и в некоторых щелочных и субщелочных породах Камчатки [Волынец и др., 1990; Савельев, Философова, 2005].

Шпинель представлена высокоглиноземистой безхромовой разностью с относительно небольшим содержанием трехвалентного железа. Роговая обманка имеет повышенное содержание алюминия и образует как мелкие дендриты, пронизывающие в виде "войлока" стекло включений, так и хорошо сформированные кристаллы.

Стекло включений является дифференциатом первичного расплава, оставшимся после кристаллизации минералов-узников. Оно отличается повышенным содержанием SiO₂, Al₂O₃, щелочей, и пониженными содержаниями FeO, MgO и CaO (табл. 3).

Следует отметить, что практически все предыдущие находки ренита связаны со щелочными породами. Ренит, описываемый в настоящем сообщении, обнаружен в породах толеитовой и известково-щелочной серий, представленных высокоглиноземистыми базальтами [Хренов и др., 1985], а также высокомагнезиальными (оливин-куммулятивными) базальтами — андезитами, непрерывная серия которых образована фракционированием алливалит-эвкритовой ассоциации и смешением с дацитовой магмой в верхах магматической колонны [Селянгин, 1979, 1987].

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Многочисленные исследования ренитсодержащих минеральных ассоциаций позволяют говорить о стабильности парагенезиса ренита и высоглиноземистого клинопироксена [Тимина и др., 2006; Шарыгин, 2002; Kogarko et al., 2005; Magonthier, Velde, 1976 и др.], в то время как другие сопутствующие фазы характеризуются более изменчивым составом и непостоянством присутствия в этих ассоциациях. Устойчивым признаком расплавных микровключений с ренитом является также высокая глиноземистость остаточного кислого стекла.

По данным гомогенизации и криометрии ренитсодержащих расплавных включений в оливинах из пород щелочного состава [Шарыгин, 2002; Шарыгин, Тимина, 2008], в которых газовые пузырьки содержат жидкую СО2, захват включений расплава в ядрах фенокристов оливина происходил при T > >1300°С и Р>3-5 кбар. Выявляется следующий порядок образования фаз: ±сульфидная глобула > Alшпинель (1320–1255°С) > ренит (1260–1180°С) > клинопироксен (1240-1130°С) > апатит > ±амфибол, Fe-Ti-оксиды (ильменит или Ti-магнетит) (>1100°С) > стекло (>1100°С). Стекла гомогенизированных включений [Шарыгин, 2002] характеризуются высокими содержаниями FeO (14.4-21), MgO (4.5–7.5), CaO (8.5–11), TiO₂ (2.3–4.5), P₂O₅ (0.7–0.9) и низкими SiO₂ (43.3–46.9), Al₂O₃ (9–14), Na₂O + + K₂O (2.6-5.5 мас. %). Остаточные стекла исходных, не нагревавшихся включений, имеют существенно более кислый состав (в мас. %): $SiO_2 - 60.5 -$ 61, TiO₂ - 0.2-0.3, Al₂O₃ - 23.2-24.5, FeO - 0.8-1.8, MgO - 0.2-1.5, CaO - 0.4-0.7, Na₂O - 5.2-6.6, K₂O -4.9-5.8, $P_2O_5 - 0.3-0.7$, Cl - 0.3-0.4. За исключением не столь резкого повышения щелочей, подобная тенденция дифференциации расплава наблюдается и в ренитсодержащих включениях из оливина исследованных нами пород нормальной щелочности.

№ обр.	LS16		LS26-28		LS20	KL119-3		KL119-5		
Минералы	Срх	Sp	Gl	Срх	Срх	Gl	Срх	Срх	Hb	Gl
SiO ₂	45.42	0.00	63.64	44.37	43.30	64.44	39.49	39.44	42.35	56.85
TiO ₂	1.76	0.44	0.93	1.77	1.84	0.20	2.07	2.57	0.75	0.62
Al_2O_3	10.40	58.13	22.17	13.19	13.52	22.82	15.34	16.91	17.82	23.95
Cr ₂ O ₃	0.02	0.00	0.00	0.02	0.00	0.03	0.00	0.00	0.01	0.01
Fe ₂ O ₃	2.20	8.86	0.00	2.00	2.82	0.00	6.29	5.54	8.23	0.00
FeO	7.40	19.97	2.07	7.34	6.08	1.88	5.22	5.43	0.00	2.06
MnO	0.19	0.19	0.04	0.22	0.16	0.04	0.14	0.19	0.27	0.09
MgO	11.30	14.35	0.54	9.77	9.62	0.40	7.67	7.42	15.93	0.67
CaO	20.66	0.00	3.72	21.60	22.50	4.23	22.42	22.28	10.14	4.98
Na ₂ O	0.36	0.00	5.15	0.37	0.26	4.26	0.28	0.45	2.36	4.44
K ₂ O	0.00	0.00	1.54	0.09	0.00	1.20	0.00	0.00	0.20	1.97
H ₂ O	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	2.13	0.00
Сумма	99.72	101.94	99.80	100.74	100.10	99.50	98.92	100.23	100.19	95.64
Формульные количества (Срх на 6, Нb на 23, Sp на 32, Gl на 8 атомов кислорода)										
Si	1.7021	0.0000	2.8221	1.6489	1.6200	2.8449	1.5137	1.4886	5.9427	2.6645
Ti	0.0499	0.0701	0.0309	0.0496	0.0517	0.0067	0.0595	0.0731	0.0796	0.0220
Al	0.4600	14.4532	1.1589	0.5775	0.5961	1.1876	0.6932	0.7521	2.9480	1.3230
Cr	0.0005	0.0000	0.0000	0.0006	0.0000	0.0012	0.0000	0.0000	0.0007	0.0005
Fe ⁺³	0.0620	1.4066	0.0000	0.0560	0.0795	0.0000	0.1815	0.1575	0.8691	0.0000
Fe ⁺²	0.2322	3.5231	0.0766	0.2281	0.1902	0.0693	0.1673	0.1713	0.0000	0.0809
Mn	0.0061	0.0337	0.0013	0.0068	0.0052	0.0015	0.0045	0.0060	0.0324	0.0037
Mg	0.6311	4.5134	0.0355	0.5412	0.5366	0.0266	0.4384	0.4177	3.3334	0.0465
Ca	0.8298	0.0000	0.1767	0.8602	0.9018	0.2001	0.9208	0.9008	1.5239	0.2501
Na	0.0264	0.0000	0.4427	0.0266	0.0189	0.3645	0.0211	0.0328	0.6418	0.4035
Κ	0.0000	0.0000	0.0870	0.0045	0.0000	0.0677	0.0000	0.0002	0.0362	0.1176
H ₂ O	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	1.0000	0.0000
Mg#	0.73	0.56	0.32	0.70	0.74	0.28	0.72	0.71	1.00	0.36
Сумма	4.0000	24.0001	4.8317	4.0000	4.0000	4.7701	4.0000	4.0001	16.4078	4.9123

Таблица 3. Составы сопутствующих минералов-узников

Примечание. Fe₂O₃ в кпинопироксене, роговой обманке и шпинели рассчитывалась в соответствии со стехиометрией данных минералов Fe₂O₃ в рёните рассчитано в соответствии с [Johnston, Stout, 1985]. Для роговой обманки досчитано содержание воды, в расчете на одну молекулу H₂O. Анализы выполнены в ИВиС ДВО РАН, на микрозонде "Камебакс". Ускоряющее напряжение 20 кв, ток на образце 20 на. Аналитик В.В. Ананьев.

В базанитах вулкана Маунт Сайдли (Западная Антарктика), ренит и сопутствующие ему минералы кристаллизуются между 1190 и 1090°С и при давлении <0.5 кбар [Grapes et al., 2003]. По данным [Treiman, 2008], ренит может быть продуктом реакции титано-чермакитового амфибола с пироксеном:

$$Ca_{2}(M_{4}^{+2} Ti)(Al_{2}Si_{6})O_{22}(OH)_{2} + M^{+2}SiO_{3} =$$

= $Ca_{2}M_{5}^{+2}Ti(Al_{2}Si_{4})O_{20} + 3SiO_{2} + H_{2}O.$

При соответствующей калибровке, как предполагается, данная реакция позволит ограничить пре-

делы возможных значений фугитивности воды и сопутствующих летучих компонентов.

Кажется парадоксальным раннее и длительное (1320–1130°С) выделение столь высокоглиноземистых фаз как шпинель, ренит и клинопироксен из расплава с таким низким содержанием глинозема, как в гомогенизированном включении [Шарыгин, 2002], сопровождающееся еще и накоплением его в остаточном расплаве. Надо полагать, что указанной ассоциации минералов-узников предшествовала кристаллизация на стенках вакуолей значительной доли вещества минерала-хозяина – оливина, обеспечивавшая достаточную концентрацию Al₂O₃ ко времени выделения ренитсодержащей ассоциации. Это должно приводить к существенному увеличение размеров включений при их гомогенизации.

Структурные особенности ренита позволяют предположить, что он может быть "эфемерной" промежуточной фазой при кристаллизации последовательности шпинель-пироксен [Шарыгин, Тимина, 2008], хотя нами не найдены упоминания о структурах распада ренита или каких-либо его реакционных отношениях с другими фазами. На наш взгляд, ренит надо считать редким (редко находимым) акцессорным минералом.

Обзор доступных нам литературных источников показывает широкие пределы параметров его устойчивости: температур (1260–1180°С), давления (4– 0.5 кбар), фугитивности кислорода (от соответствующей буферу железо-вюстит в метеоритах [Fuchs, 1971], до определяемой равновесием никель-бунзенит в ситуации замещения амфибола ксенолитов [Grapes et al., 2003]), содержаний (и, видимо, состава) летучих компонентов, а также составов магматических расплавов, из которых ренит выделялся (от высоко- до нормально-щелочных (толеитовых) и от ультраосновных до кислых). На уровне современного знания, таким образом, не обнаруживается какого-то критического фактора или группы факторов, обусловливающих появление ренита, хотя статистически в качестве благоприятствующих "высвечиваются" повышенная щелочность расплавов и повышенное давление.

Теоретически, эволюция охлаждающейся магмы, захваченной минералами в виде микровключений, должна протекать аналогично эволюции основного объема магмы за пределами фенокристаллов, чему, в общем случае (качественно) соответствует отмеченное выше нахождение ренита и в расплавных включениях, и в основной массе оливиновых и безоливиновых (отделивших оливин) щелочных пород. Для вулканитов существенное отличие в характере кристаллизации расплава микровключений и магмы основного объема может быть связано с подъемом последней выше уровня вскипания, когда главным фактором кристаллизации становится потеря магмой летучих компонентов, сопровождаемая их фракционированием, но не затрагивающая содержимого изолированных в минералах микровключений. Аналогичным образом вскипают и кристаллизуются интерстициальные расплавы выносимых вулканитами обломков (нодулей) родственных им кумулатов. Количественные соотношения минералы/расплав в ренитсодержащих включениях (см. рис. 1) сопоставимы со степенью кристалличности этих интерстиций и основных масс нормально щелочных пород основного - среднего состава, сложенных, однако, ординарными одно- или двупироксен-плагиоклазовыми ассоциациями с титаномагнетитом (±ильменит) и низкоглиноземистым

кислым стеклом. Является ли отсутствие в них свободного (не "узника") ренита — хотя бы в виде реликтов — вопросом более тщательного его поиска или какого-то существенного различия условий эволюции "законсервированного" и свободного магматического расплава — интригующая петрогенетическая проблема, разрешение которой требует более широких и детальных исследований, с привлечением тонких геохимических и экспериментальных методов.

СПИСОК ЛИТЕРАТУРЫ

Ананьев В.В. Происхождение Ol-An сегрегаций в вулканитах по результатам изучения шпинелей и расплавных включений // Тез. докладов VI Всесоюзного вулканологического совещания. Вып. 2. Петропавловск-Камчатский, 1985. С. 124–126.

Ананьев В.В., Шнырев Г.Д. Гранат в расплавных включениях из оливина Ol-An сегрегаций (вулкан Ксудач, Камчатка) // ДАН. 1984. Т. 274. № 2. С. 402–406.

Волынец О.Н., Успенский В.С., Аношин Г.Н. и др. Эволюция геодинамического режима магмаобразования на Восточной Камчатке в позднем кайнозое (по геохимическим данным) // Вулканология и сейсмология. 1990. № 5. С. 14–27.

Гриб Е.Н., Перепелов А.Б. Оливинсодержащие базальты Карымского вулканического центра: минералогия, петрогенезис и источники магм // Вулканология и сейсмология. 2008. № 4. С. 14–35.

Добрецов Н.Л., Кочкин Ю.Н., Кривенко А.П., Кутолин В.А. Породообразующие пироксены М.: Наука, 1971. 454 с.

Плечов П.Ю., Шишкина Т.А., Ермаков В.А., Портнягин М.В. Условия формирования алливалитов – оливинанортитовых кристаллических включений – в вулканитах Курило-Камчатской дуги // Петрология. 2008. Т. 16. № 3. С. 275–276.

Савельев Д.П., Философова Т.М. Минералогические особенности меловых щелочных базальтов п-ва Камчатский мыс (восточная Камчатка) // Вестник КРА-УНЦ. Серия Науки о Земле. 2005. № 5. С. 94–102.

Селянгин О.Б. Непрерывно-дифференцированные потоки лав с включениями и вероятное устройство области дифференциации магмы под вулканом // Бюлл. вулканол. станций. 1979. № 57. С. 39–52.

Селянгин О.Б. Петрогенезис базальт-дацитовой серии в связи с эволюцией вулкано-структур. М.: Наука, 1987. 152 с.

Тимина Т.Ю., Шарыгин В.В., Головин А.В. Эволюция расплава в процессе кристаллизации базанитов трубки Тергешская, Северо-Минусинская впадина // Геохимия. 2006. № 8. С. 814–833.

Хренов А.П., Ананьев В.В., Балуев Э.Ю. и др. Петрология продуктов извержений Ключевского вулкана (прорыв Предсказанный, 1983 г.) // Вулканология и сейсмология. 1985. № 1. С. 47–70.

Шарыгин В.В. Включения расплава в оливине из базанита Махтеш Рамон, южный Израиль // Тез. докладов на Всероссийском семинаре "Геохимия магматических пород". Школа "Щелочной магматизм Земли –

2002". ttp: // alkaline2002.narod.ru/abstracts/sharigin.html

Шарыгин В.В., Тимина Т.Ю. Ренит в щелочных базальтах: потенциальный индикатор Р-Т- $f_{O_{2}}$ условий

(по данным изучения включений расплава) // Тез. докладов на Всероссийском семинаре "Геохимия магматических пород". Школа "Щелочной магматизм Земли – 2008". http: // geo.web.ru/conf/alkaline/2008/Sharigin3.htm

Babkine J., Conquere F., Vilminot J.C., Duong P.K. Sur un nouveaugiasement de rhonite (Monistrol-d'Allier, Haute Loire) // C.R. Acad. Sci. 1964. Paris. Ser D 258. P. 5479–5481.

Fuchs L.H. Occurrence of wollastonite, rhonite and andradite in the Allende meteorite // Amer. Miner. 1971. V. 56. P. 2053–2067.

Grapes R.H., Wysoczanski R.J. Hoskin Rhonite paragenesis in pyroxenite xenoliths, Mount Sidley volcano, Marie Byrd Land, West Antarctica // Mineralogical Magazine. 2003. V. 67. № 4. P. 639–651. Johnston A.D., Stout J.H. Compositional variation of naturally occurring rhoenite // Amer. Miner. 1985. V. 70. P. 1211–1216

Kogarko L.N., Hellebrand E., Ryabchikov I.D. Trace element partitioning between rhonite and silicate melt in Cape Verde volcanics // Геохимия. 2005. № 1. С. 3–9.

Magonthier M.C., Velde D. Mineralogy and Petrology of Some Tertiary Leucite-Rhonite Basanites from Central France // Mineralogical Magazine. 1976. V. 40. № 316. P. 817–826.

Mineral Data Publishing. 2001. Version 1.2. http://www.handbookofmineralogy.org/pdfs/rhonite.pdf

Sharygin V.V., Szaby Cs., Kythay K. et al. Rhonite in silicaundersaturated alkali basalts: inferences on silicate melt inclusions in olivine phenocrysts // Alkaline magmatism, its sources and plumes. Irkutsk-Napoli. Irkutsk@. 2007. P. 157–182.

Treiman A.H. Rhonite in Luna 24 pyroxenes: First find from the Moon, and implications for volatiles in planetary magmas // American Mineralogis. 2008. V. 93. № 2/3. P. 488–491.