## Minor- and Trace Element Zoning in Plagioclase From Kizimen Volcano, Kamchatka: Insights on the Magma Chamber Processes

Tatiana Churikova<sup>1,2</sup>, Gerhard Wörner<sup>2</sup>, John Eichelberger<sup>3</sup>, and Boris Ivanov<sup>1</sup>

Major and trace elements in whole rocks as well as major (Al, Si, Na, Ca, K), minor (Fe) and trace (Sr, Ba, Mg) elements in plagioclase phenocrysts were investigated in lavas from Kizimen volcano, Kamchatka. Quaternary Kizimen volcano was active during Holocene times and is intriguing in several aspects: (1) its lavas often contain unusually high proportions of incorporated basalt and basaltic andesite magma as enclaves; (2) banded texture is common in lavas; (3) large phenocrysts of plagioclase and hornblende associate with olivine and orthopyroxene in the same sample; (4) mafic enclaves and evolved dacites show a REE cross-over patterns; (5) MORB-like Sr-Nd isotope values exclude crustal contamination. Mafic enclaves and host dacitic lavas are both hybrid and represented by mixtures of mafic and silicic end-members in different proportions. These end-members are likely derivates of the same basaltic parent assuming a significant amount of amphibole fractionation. To understand magma chamber processes of the Kizimen volcano and the origin of its magmas, we used major and trace element zoning patterns in plagioclase phenocrysts from mafic enclaves and evolved hosts. According to our data, mafic and silicic magmas maintain some identity as physically distinct domains, while sometimes exchanging only heat but at other times heat, melt, and crystals between them. Processes in the magma chamber that occurred before eruption are: (1) crystal growth and fractionation, (2) recharge and magma mixing, and (3) resumed crystallization in high-temperature dacite heated by mafic magma.

## 1. INTRODUCTION

Magma chamber processes play an important role in the formation of igneous rocks. These processes include crys-

tallization, melt differentiation, convection, and magma mixing. Experimental and numerical models of magma chamber processes [e.g. *Marsh*, 1989] allow study of the effects of physical parameters such as density and viscosity as a function of melt composition, temperature gradients inside the chamber and near the contact with country rock, geometry of the magma chamber, etc. However, such models need to be calibrated with natural systems, and it is difficult to apply them directly because many of these parameters are not well constrained.

One approach to better understand mixing dynamics in magmas is the study of the crystallization histories of minerals in volcanic rocks, using major, minor, and trace element zoning in plagioclase in relation to magma

<sup>&</sup>lt;sup>1</sup>Institute of Volcanology and Seismology Far East Division Russian Academy of Sciences, Kamchatka, Russia

<sup>&</sup>lt;sup>2</sup> Geowissenschaftliches Zentrum Göttingen, Universität Göttingen, Germany

<sup>&</sup>lt;sup>3</sup> Alaska Volcano Observatory, Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, USA

Volcanism and Subduction: The Kamchatka Region

Geophysical Monograph Series 172

Copyright 2007 by the American Geophysical Union.

<sup>10.1029/172</sup>GM22

compositions and crystallization conditions. Plagioclase is the best mineral for such kind of research because it faithfully records the changes in magma compositions at variable temporal and spatial scales without significant subsequent re-equilibration [*Grove et al.* 1981, *Davidson and Tepley*, 1997; *Ginibre et al.*, 2002a, 2002b]. However, controls on its composition are also rather complex and difficult to separate. Numerical modeling [e.g. *Allěgre et al.*, 1981] has provided insights into the kinetics of plagioclase growth and resorption. Experimental studies have elucidated the influence of some important factors (e.g. P, T, melt composition, H<sub>2</sub>O content in the melt) on the An–Ab system (e.g. *Drake and Weill*, 1975; *Bindeman et al.*, 1998).

Recently, significant variations in minor, trace elements and isotope ratios between individual growth zones of natural plagioclase crystals at the scale of several microns were revealed using SIMS and TIMS techniques [Churikova and Sokolov, 1993; Brophy et al., 1996; Davidson and Tepley 1997; Tepley et al., 2000]. These variations have been attributed to processes occurring during magma storage and ascent, including fractional crystallization, magma mixing, degassing, assimilation, and temperature effects. The spatial resolution of the SIMS and TIMS is insufficient to reveal chemical variations in individual growth zones at a micron scale. The electron microprobe allows to measure the major, minor and trace elements (if concentrations > 100 ppm) in minerals with a spatial resolution of only a few microns [e.g. Ginibre et al., 2002a, b]. Such an approach allows studying a greater number of crystals at higher spatial resolution and at significantly lower cost.

In this study we report the results of microprobe analyses on plagioclase phenocrysts from basalts, basaltic andesites and dacites of Kizimen volcano (Kamchatka, Figure 1). Tephrachronological work on the eruption history of Kizimen has shown that the volcano formed during the Quaternary [*Melekestsev et al.*, 1992] synchronously with an associated graben and was active until Late Holocene time. Its structural setting, and indeed its morphology and petrology, is strikingly similar to Unzen Volcano in Japan [*Nakada & Motomura*, 1999; *Browne et al.*, 2006]. At present, there is intense fumarolic activity on the slope of the volcano.

Our geochemical investigation of Kizimen volcano was conducted in several stages. First, we analyzed the major and trace elements as well as isotope ratios of Sr, Nd (in three samples) and Pb (in one sample) in whole rocks. Then we studied six plagioclase phenocrysts from three representative samples for major (Al, Si, Na, Ca, K), minor (Fe) and trace (Sr, Ba, Mg) elements.

## 2. GEOLOGICAL SETTING, PETROGRAPHY AND MINERALOGY OF SAMPLES STUDIED

Kizimen Volcano, one of the active volcanoes of the Kurile-Kamchatka arc, is located on the eastern margin of the Central Kamchatka Depression (CKD) in the area of Schapinsky graben midway between the Eastern Volcanic Front (EVF) and CKD at the latitude of the Kliuchevskaya Group (Figure 1). The northwestern part of the volcano is cut by NE-SW-trending, westward-dipping normal faults, which form a series of cliffs with good exposures of the volcano's flank and its basement. A single reported eruption, in 1928, was very modest and no deposits were found.

Four cycles of activity have been identified in the eruptive history of the volcano (Figure 1), with ages from 12-11 Ka to present [Melekestsev et al., 1992]. Holocene eruptions produced lava flows and a dome complex of basaltic andesite to dacite composition in the upper part of volcano (Figure 1). Andesite and dacite lava flows contain abundant cognate mafic enclaves of more primitive composition (Figure 2a). The most recent summit lava has an unusual high proportion of up to 35 vol % of large (> 20 cm) mafic enclaves of basaltic andesite composition. Dacitic lavas with a few percent of enclaves of smaller size are more common (Figure 2b). We did not find any correlations between shape of enclaves and their composition. There are also abundant conspicuously banded lavas, with an apparent thickness of mafic layers from a few millimeters to 20–25 cm (Figure 2c) thick. All andesite to dacite lavas are hornblende-bearing mediumpotassic, and calc-alkaline in composition (Figure 3), and the enclaves are basaltic to basaltic andesites [Churikova et al., 2001b].

All samples from basalts to dacites contain plagioclase, hornblende, orthopyroxene, olivine, Ti-magnetite and glass. The amount of olivine decreases from 5 vol% in basalts to a trace in dacite. Basalts are also richer in orthopyroxene compared to dacites, 20 vol% and 10 vol%, respectively. In contrast, the amount of hornblende increases from 5 vol% in basaltic enclaves to 10–15 vol% in andesites and dacites. The amount of plagioclase and Ti-magnetite is rather similar in all rocks, about 20–25 vol% and 2–3 vol%, respectively. Additionally, basalts and basaltic andesites have about 5% of high-Ca clinopyroxene, whereas dacites often contain 0.5–1 vol% quartz [Trusov & Pletchov, 2005].

The composition of minerals in all types of rocks is surprisingly similar:  $Fo_{79.72}$  olivine,  $En_{63-65}Wo_{1-2}$  orthopyroxene, titanomagnetite, and high-Mg amphibole. Only plagioclases show conspicuous compositional variations.



**Figure 1.** Schematic map of the Kizimen volcano and its surroundings [after *Melekestsev at all*, 1992]. Inset shows the location of Kizimen volcano at the border between Eastern Volcanic Front and Central Kamchatka Depression. All ages are in B.P.



**Figure 2.** (a) Large basaltic andesite enclave (17\*20 cm) in a dacitic lava; (b) 5-cm-diameter fine-grained enclave of basaltic composition inside a larger basaltic andesite enclave in dacitic host. Plagioclase crystals of more than 1 cm in size are found in both, host dacite and mafic enclave (shown by arrows); (c) fragment of the banded lava, the thickness of the layers is shown by double arrows.

In our view, the most prominent characteristic of Kizimen rocks is the occurrence of large phenocrysts of plagioclase and hornblende (up to 2 cm) co-existing with olivine and orthopyroxene.

## 3. ANALYTICAL METHODS

Analyzes were performed in Geowissenschaftlisches Zentrum of Göttingen Georg-August Universität, Abteilung Geochemie, Germany. Major elements and some trace elements (Sc, V, Cr, Co, Ni, Zn, Ga, Rb, Sr, Zr, and Ba) were determined in 19 samples by X-ray fluorescence analysis on glass discs, prepared with a lithium tetraborate flux. Fe<sub>2</sub>O<sub>3</sub> was determined titrimetrically with KMnO<sub>5</sub> and the loss on ignition (LOI) by weight difference at heating to 1100°C. The analytical uncertainty ( $\pm 2\sigma$ , rel. %) for all major elements is better than 1 % except for Fe, Na (2%) and LOI (10%), whereas for trace elements it is better than 5 %.

Additional trace elements were analyzed in 7 samples by ICPMS. The analytical uncertainty for most elements was better than 10 rel. %, except for Nb and Ta (15–20 rel. %), which was estimated based on repeated analyses of rock standards JB-3 and JA-2.

Isotope ratios for Sr, Nd, and Pb were measured with a Finnigan MAT 262 RPQ II+ mass-spectrometer at Göttingen using standards NBS987 (0.710245) for Sr, LaJolla (0.511847) for Nd and NBS981 (recommended values from *Todt et al.*, 1984) for Pb. Statistical errors ( $\pm 2\sigma$ ) were estimated to be less than 0.004% for Sr and Nd and less than 0.1% for Pb. For details see Dorendof et. al. [2000a, b] and Churikova et al.[2001a].

Major (Si, Al, Ca, Na, and K), minor (Fe) and trace (Sr, Mg, Ba) elements in six plagioclase grains were analyzed using JEOL8900 electron microprobe. This study was combined with textural observations using back scattered electron (BSE) images (multiply accumulated to increase mass resolution) where BSE intensity corresponds to An content. The BSE images were used to locate quantitative measurement points along profiles from core to rim. The central parts and the rims of microlites in the same samples were also analyzed for comparison.

Details of the technique for major and trace element determination with electron microprobe JEOL8900 WDS were described in Ginibre et al. [2002a]. Microprobe quantitative point analyses for Al, Si, Na, Ca, K, Ba, Sr, Fe, Ti, Ba, Mg were performed at 20 kV acceleration voltage and 40 nA beam current, with 2 to 5  $\mu$ m beam size. Alkali elements (Na, K) and major elements (Al, Si, Ca) were analyzed during the first 90 s (16 s counting time on peak). Minor (Fe) and trace elements (Sr, Ba, Mg) were then analyzed over 4 min counting time on the peak.



**Figure 3.**  $K_2O$  vs.  $SiO_2$  for Kizimen volcano whole rocks. Rock chemistry within the mafic enclaves changes with time towards more mafic compositions. Compositional fields of EVF and CKD are shown for the comparison [after *Churikova et al.*, 2001a]. The pairs of rocks (host rock – mafic enclave) for three eruptions are shown by additional symbols (crosses, circles and triangles). Ages are taken from Melekestsev et al. (1992) and given in B.P.

The detection limits for Ba, Sr, Fe, Mg, and Ti, as well as the ranges of concentrations and analytical uncertainties for the analyses at the concentrations measured are given in Ginibre et al. [2002b]. Typical analytical uncertainties calculated from counting statistics for each analysis were 19 ppm for Mg, 60–70 ppm for Fe, 110–120 ppm for Sr, 70–75 ppm for Ba and 28–31 ppm for Ti.

## 4. RESULTS

# 4.1. Whole-Rock Geochemical Data From Kizimen Volcano.

Lavas and mafic enclaves define linear trend in  $K_2O$  versus SiO<sub>2</sub> compositional space (Figure 3). Enclaves in dacites become more mafic in more recent lavas. Kizimen lavas appeared to be transitional between the EVF and the CKD, i.e. they are more enriched in alkalis than the rocks of EVF but depleted in alkalis as compared to basalts and basaltic andesites of CKD (Figure 3). This is part of the systematic compositional trend from the Eastern Volcanic Front (EVF) through the Central Kamchatka Depression (CKD) to the back are [*Churikova et al.*, 2001a].

Trace element patterns for products of the Kizimen volcano are typical for arc volcanism. They are characterized by strongly but variably enriched fluid mobile trace elements (LILE and LREE: K, Cs, U, Ba, Rb, Sr, Pb, La, and Ce) and relatively depleted HFSE (Nb, Ta, Hf, Zr, Ti) and HREE (from Tb to Yb) elements. The enrichment increases with increasing element compatibility. Ba, Rb, U, Th, and K have more than 10 times higher concentrations compared to NMORB. However, the andesitic and dacitic lavas show a stronger gradient from the most incompatible to less incompatible elements than the basaltic and basaltic-andesitic enclaves (Figure 4). This results in a cross-over pattern because the HREE concentrations in dacitic rocks are lower than in basaltic rocks.



**Figure 4.** Trace element patterns for Kizimen lavas (gray field) and mafic enclaves (black field). All data are normalized to NMORB [after *Sun & McDonough*, 1989].

Sr- and Nd-isotope ratios for the three most mafic rocks are very close to each other (<sup>87</sup>Sr/<sup>86</sup>Sr: 0.703352 – 0.703370; <sup>143</sup>Nd/<sup>144</sup>Nd: 0.513045-0.513048). They fall within the range of Kamchatka rocks (i.e., where the fields for EVF, CKD and Sredinny Ridge of the back arc overlap; *Churikova et al.*, 2001a) and are close to the MORB-field.

Thus rocks of Kizimen volcano are represented by typical arc lavas of medium-K calc-alkaline series with strong but variable LILE and LREE enrichment and low HFSE. Mafic enclaves and evolved dacites show a REE cross-over patterns. In isotope space they are close to NMORB.

## 4.2. Zoning Trends in Plagioclase Phenocrysts From Kizimen Volcano

We studied the plagioclase phenocrysts from host lavas and its enclaves in three samples: a) dacite lava from the one of the summit flows (KIZ-07; 60.10 wt% SiO<sub>2</sub>), b) a basaltic-andesite enclave in this lava flow (KIZ-07/1; 52.90 wt% SiO<sub>2</sub>), and c) a mafic enclave from a second summit flow (KIZ-01/1; 49.70 wt% SiO<sub>2</sub>; Table 1, Figure 1). All three samples were erupted during the current eruptive cycle [*Melekestsev et al.*, 1992], which began 3,000 years ago. Morphologically, three types of plagioclases were distinguished in all studied rocks.

Pl-1 occurs predominantly in mafic enclaves and less frequently in the host dacite. Pl-1 is characterized by euhedral shape and 20–50-micron-wide zones of growth (Figure 5a). The cores of these crystals sometimes have patchy textures (Figure 5a) or they are relatively homogeneous (not shown). Cores and mantles are compositionally uniform, whereas rims are characterized by steep compositional gradients.

Pl-2 crystals, found only in host dacitic lavas, show very narrow oscillatory zonation  $(5-50 \ \mu\text{m})$  throughout. Pl-2 has usually numerous dissolution surfaces in the mantle zone, with subsequent regrowth (Figure 6a). The outermost zones are very narrow  $(5-10 \ \mu\text{m})$ .

Pl-3 crystals were observed in both mafic enclaves and in host dacite. It has subhedral to irregular shapes. Pl-3 crystals have continuous (from tens to first hundreds of microns) sieved zones. In some grains such zones make up more than 50% of the crystal. However, the outermost rims of these crystals are well formed and show clear contact with groundmass (Figures 5b, 6b). The cores of Pl-3 crystals show numerous narrow growth zones that are texturally similar to the Pl-2 phenocrysts from the dacitic lavas. We analyzed different zones in 2 grains of Pl-1, in 2 grains of Pl-2 and in 2 grains of Pl-3 (1 from enclave and 1 from host lava) for major (Al, Si, Na, Ca, K), minor (Fe) and trace (Sr, Ba, Mg) elements. Point measurements were taken along profiles from core to rim with spot size  $2-5 \,\mu$ m (Figures 5 and 6; Table 2). 4.2.1. Pl-1 in mafic enclaves. Pl-1 phenocrysts from basalt and basaltic andesite enclaves are characterized by the absence of any significant zoning in their cores (Figure 5a), which composition is the most calcic found in Kizimen rocks ( $An_{86}$ - $An_{93}$ , see insert in Figure 5a). These cores sometimes have partly sieved texture (Figure 5a) and include hornblende and patches of more sodic plagioclase ( $An_{77}$ , see points 6 and 7 on the Figure 5a). The mantle zone between core and rim is close in composition to the core ( $An_{77}$ - $An_{93}$ ). Cores and their mantles are low in Ba (< 50 ppm) and moderately high in Sr (300 – 550 ppm). Fe and Mg concentrations are high (up to 5000 ppm and 300 – 500 ppm, respectively).

Rims of Pl-1 are very different from the cores and mantle zones. The thickness of the outer rims varies from several microns to 100 microns. Composition of the rims is more sodic  $(An_{74.36})$  than the inner parts of the grains, and An content decreases outwards. Sr and Ba concentrations in the rim increase to 900 ppm and 500 ppm, respectively, whereas Fe and Mg decrease to 2800 ppm and 200 ppm, respectively (Figure 5a). Plagioclase microlites in the enclaves are similar in composition to rims of Pl-1.

4.2.2. Pl-2 in dacitic lavas are relatively large in size (up to 2 cm, Figures 2b, 6a) and characterized by narrow oscillatory zonation. In contrast to Pl-1 from the enclaves, the cores and mantle zones of Pl-2 are rather sodic  $(An_{40} - An_{50})$  and show higher Sr (500 - 750 ppm) and Ba (150-300 ppm) concentrations and lower Fe (1500-2000 ppm) and Mg (100-150 ppm). Because elemental concentrations change so strongly from one growth zone to another, the zoning patterns of Pl-2 are much more variable compared to the Pl-1 phenocrysts from the mafic enclaves (Figure 6a). The thickness of the outermost rims is less than 50 microns. The rims differ in chemical composition from the cores and mantle zones of the crystals. However, in contrast to Pl-1, the rims of Pl-2 are enriched in anorthite component, Fe, and Mg and depleted in Ba and Sr (Figures 6a, 7) compared to the core and mantle zones. Microlites of the dacitic host are similar in chemical composition to the rim of Pl-2.

4.2.3. Pl-3 in dacitic lavas and mafic enclaves are surprisingly similar in crystal morphology and chemical composition. Three distinct growth zones are present in these grains: (I) oscillatory-zoned, compositionally uniform inner core, (II) a sieve-textured zone with a thickness from 50 up to 200 microns and (III) about 50-micron-wide outermost rim (Figures 5b, 6b). Cores of Pl-3 phenocrysts are similar in composition to cores of Pl-2 phenocrysts from dacitic lavas. They are low in An, Fe, and Mg at relatively high concentrations of Ba and Sr. In the sieve-

|                                      |                    | position un       | <u>a 10010pe aan</u>  |        |        |        |        |          |        |        |
|--------------------------------------|--------------------|-------------------|-----------------------|--------|--------|--------|--------|----------|--------|--------|
| Sample                               | TAM-01             | KIZ-01            | KIZ-01/1 <sup>b</sup> | KIZ-02 | KIZ-04 | KIZ-05 | KIZ-07 | KIZ-07/1 | KIZ-08 | KIZ-09 |
| SiO <sub>2</sub>                     | 51.75 <sup>a</sup> | 64.11             | 50.23                 | 62.63  | 62.14  | 57.10  | 60.43  | 53.28    | 58.13  | 63.88  |
| TiO <sub>2</sub>                     | 0.84               | 0.58              | 1.23                  | 0.65   | 0.68   | 0.90   | 0.77   | 1.11     | 0.94   | 0.62   |
| $Al_2 \tilde{O}_3$                   | 15.87              | 16.30             | 19.04                 | 16.60  | 17.73  | 17.54  | 16.96  | 18.48    | 17.25  | 16.25  |
| Fe <sub>2</sub> O <sub>3</sub>       | 9.43               | 2.43              | 5.38                  | 2.70   | 2.82   | 3.48   | 3.85   | 4.25     | 3.66   | 2.43   |
| FeO                                  | 0.43               | 3.05              | 5.62                  | 3.22   | 2.59   | 4.83   | 3.11   | 5.34     | 4.22   | 3.13   |
| MnO                                  | 0.19               | 0.13              | 0.19                  | 0.14   | 0.13   | 0.17   | 0.15   | 0.19     | 0.17   | 0.13   |
| MgO                                  | 8.49               | 2.46              | 5.26                  | 2.68   | 2.72   | 4.05   | 3.12   | 4.44     | 3.61   | 2.43   |
| CaO                                  | 9.29               | 5.38              | 9.35                  | 5.91   | 5.77   | 7.28   | 6.38   | 8.54     | 7.12   | 5.47   |
| Na <sub>2</sub> O                    | 2.74               | 3.72              | 2.77                  | 3.74   | 3.70   | 3.32   | 3.60   | 3.28     | 3.47   | 3.77   |
| K <sub>2</sub> Õ                     | 0.73               | 1.67              | 0.77                  | 1.58   | 1.52   | 1.16   | 1.47   | 0.90     | 1.26   | 1.74   |
| $P_2O_5$                             | 0.23               | 0.16              | 0.17                  | 0.15   | 0.19   | 0.16   | 0.16   | 0.19     | 0.18   | 0.15   |
| Total                                | 100                | 100               | 100                   | 100    | 100    | 100    | 100    | 100      | 100    | 100    |
| Li                                   | 7.9                | 16.3              | 14.2                  |        |        | 10.2   |        |          |        |        |
| Be                                   | 0.51               | 0.79              | 0.52                  |        |        | 0.63   |        |          |        |        |
| Sc                                   | 31                 | 15                | 26                    | 17     | 15     | 21     | 18     | 26       | 24     | 15     |
| V                                    | 221                | 114               | 300                   | 137    | 146    | 208    | 163    | 250      | 199    | 115    |
| Cr                                   | 481                | 17                | 15                    | 16     | 26     | 10     | 12     | 11       | 19     | 13     |
| Со                                   | 36                 | 14                | 30                    | 18     | 14     | 29     | 17     | 26       | 21     | 13     |
| Ni                                   | 166                | n.d. <sup>c</sup> | 2                     | n.d.   | 1      | 7      | n.d.   | n.d.     | n.d.   | n.d.   |
| Zn                                   | 79                 | 55                | 79                    | 61     | 57     | 68     | 63     | 74       | 65     | 55     |
| Ga                                   | 15                 | 16                | 17                    | 16     | 15     | 17     | 15     | 18       | 16     | 15     |
| Rb                                   | 15                 | 38                | 14                    | 34*    | 32*    | 26     | 31*    | 17*      | 25*    | 41*    |
| Sr                                   | 380                | 319               | 370                   | 328    | 318    | 330    | 320    | 368      | 325    | 304    |
| Y                                    | 16                 | 16                | 21                    | 19*    | 15*    | 20     | 22*    | 24*      | 22*    | 18*    |
| Zr                                   | 86                 | 121               | 86                    | 124    | 115    | 102    | 117    | 96       | 117    | 126    |
| Nb                                   | 2.4                | 4.2               | 2.9                   | 5.0*   | 6.0*   | 3.5    | 4.0*   | 3.0*     | 4.0*   | 4.0*   |
| Cs                                   | 0.50               | 1.50              | 0.52                  |        |        | 0.47   |        |          |        |        |
| Ba                                   | 358                | 676               | 310                   | 593    | 608    | 458    | 567    | 376      | 451    | 655    |
| La                                   | 7.62               | 10.16             | 5.85                  |        |        | 7.73   |        |          |        |        |
| Ce                                   | 19.02              | 22.39             | 15.18                 |        |        | 19.37  |        |          |        |        |
| Pr                                   | 2.69               | 3.32              | 2.34                  |        |        | 2.76   |        |          |        |        |
| Nd                                   | 13.10              | 13.54             | 11.99                 |        |        | 12.79  |        |          |        |        |
| Sm                                   | 3.72               | 2.89              | 3.36                  |        |        | 3.23   |        |          |        |        |
| Eu                                   | 1.11               | 0.95              | 1.14                  |        |        | 1.04   |        |          |        |        |
| Gd                                   | 3.29               | 2.58              | 3.28                  |        |        | 2.97   |        |          |        |        |
| Tb                                   | 0.52               | 0.36              | 0.54                  |        |        | 0.44   |        |          |        |        |
| Dv                                   | 3.38               | 2.28              | 3.33                  |        |        | 2.94   |        |          |        |        |
| Ho                                   | 0.67               | 0.55              | 0.74                  |        |        | 0.65   |        |          |        |        |
| Er                                   | 2.06               | 1.46              | 2.18                  |        |        | 1.85   |        |          |        |        |
| Tm                                   | 0.32               | 0.20              | 0.30                  |        |        | 0.26   |        |          |        |        |
| Yb                                   | 2.05               | 1.39              | 2.00                  |        |        | 1.72   |        |          |        |        |
| Lu                                   | 0.31               | 0.24              | 0.29                  |        |        | 0.28   |        |          |        |        |
| Hf                                   | 2.27               | 1.91              | 1.99                  |        |        | 1.88   |        |          |        |        |
| Та                                   | 0.19               | 0.21              | 0.17                  |        |        | 0.17   |        |          |        |        |
| TI                                   | 0.03               | 0.27              | 0.10                  |        |        | 0.10   |        |          |        |        |
| Pb                                   | 2.15               | 5.30              | 1.95                  |        |        | 3.01   |        |          |        |        |
| Th                                   | 0.91               | 3.19              | 1.02                  |        |        | 1.42   |        |          |        |        |
| U                                    | 0.45               | 1.45              | 0.49                  |        |        | 0.79   |        |          |        |        |
| <sup>87</sup> Sr/ <sup>86</sup> Sr   |                    |                   | 0.703352              |        |        |        |        |          |        |        |
| <sup>143</sup> Nd/ <sup>144</sup> Nd |                    |                   | 0.513045              |        |        |        |        |          |        |        |
| <sup>206</sup> Pb/ <sup>204</sup> Pb |                    |                   |                       |        |        |        |        |          |        |        |
| <sup>208</sup> Pb/ <sup>204</sup> Pb |                    |                   |                       |        |        |        |        |          |        |        |
| <sup>207</sup> Pb/ <sup>204</sup> Pb |                    |                   |                       |        |        |        |        |          |        |        |

Table 1. Chemical composition and isotope data for whole rocks of the Kizimen volcano.

<sup>a</sup>Major elements, Sc, V, Cr, Co, Ni, Zn, Ga, Sr, Zr, Ba and elements marked by stars were determined by XRF analyses, other trace elements were achieved by ICP-MS. Major elements are given in weight percent, trace elements in ppm. <sup>b</sup>Samples KIZ-01/1, KIZ-07/1 and KIZ-24/1 are mafic enclaves in lavas KIZ-01, KIZ-07 and KIZ-24, respectively.

°Not detected

Table 1. (continued).

| Sample                               | KIZ-11     | KIZ-17/2 <sup>d</sup> | KIZ-18     | KIZ-19    | KIZ-21   | KIZ-22     | KIZ-23     | KIZ-24    | KIZ-24/1 |
|--------------------------------------|------------|-----------------------|------------|-----------|----------|------------|------------|-----------|----------|
| SiO <sub>2</sub>                     | 56.07      | 57.72                 | 62.30      | 51.53     | 56.72    | 62.40      | 64.26      | 55.43     | 52.28    |
| TiO <sub>2</sub>                     | 0.98       | 0.85                  | 0.68       | 1.23      | 1.10     | 0.65       | 0.59       | 1.04      | 1.30     |
| Al <sub>2</sub> Ó <sub>2</sub>       | 17.73      | 17.32                 | 16.69      | 16.90     | 17.63    | 16.84      | 16.31      | 17.67     | 18.15    |
| Fe <sub>2</sub> O <sub>2</sub>       | 2.92       | 2.78                  | 2.49       | 3.04      | 3.21     | 3.14       | 2.63       | 3.11      | 4.35     |
| FeO                                  | 5.56       | 4.88                  | 3.56       | 8.21      | 5.08     | 2.96       | 2.77       | 5.56      | 5.86     |
| MnO                                  | 0.17       | 0.17                  | 0.14       | 0.22      | 0.18     | 0.13       | 0.13       | 0.17      | 0.19     |
| MgO                                  | 4.19       | 4.17                  | 2.75       | 5.35      | 3.12     | 2.91       | 2.39       | 4.2.2     | 4.48     |
| CaO                                  | 7.75       | 7.29                  | 5.91       | 9.82      | 7.54     | 5.81       | 5.37       | 8.29      | 9.25     |
| Na.O                                 | 3.32       | 3.35                  | 3.80       | 2.77      | 3.75     | 3.57       | 3.73       | 3.22      | 3.07     |
| K.O                                  | 115        | 1 29                  | 1 54       | 0.73      | 1 40     | 1 43       | 1.68       | 1 11      | 0.88     |
| P.O.                                 | 0.17       | 0.18                  | 0.15       | 0.22      | 0.27     | 0.16       | 0.15       | 0.17      | 0.19     |
| Total                                | 100        | 100                   | 100        | 100       | 100      | 100        | 100        | 100       | 100      |
| Li                                   | 100        | 100                   | 100        | 3.8       | 100      | 100        | 100        | 8 5       | 11.7     |
| Be                                   |            |                       |            | 0.44      |          |            |            | 0.56      | 0.56     |
| Sc                                   | 21         | 22                    | 18         | 35        | 26       | 16         | 13         | 22        | 33       |
| V                                    | 220        | 190                   | 133        | 316       | 187      | 130        | 108        | 246       | 324      |
| Cr                                   | 16         | 47                    | 20         | 42        | 11       | 34         | 100        | 240       | 21       |
| Co                                   | 27         | 20                    | 20         | 37        | 20       | 14         | 13         | 27        | 21       |
| Ni                                   | 6          | 20                    | 1          | 25        | 20<br>nd | 2<br>2     | 2          | 27        | 27<br>nd |
| 7n                                   | 71         | 20<br>76              | 58         | 23        | 83       | 60         | 2<br>57    | 72        | 80       |
| Ca                                   | 16         | 17                    | 16         | 19        | 10       | 15         | 15         | 10        | 17       |
| Da                                   | 24*        | 1/<br>20*             | 22*        | 18        | 19       | 20*        | 26*        | 19        | 1/       |
| KU<br>Sr                             | 24         | 20                    | 334        | 9<br>276  | 200      | 30*        | 30         | 21        | 225      |
| SI<br>V                              | 332<br>22* | 2.1*                  | 324<br>20* | 270       | 299      | 541<br>15* | 320<br>10* | 320       | 222      |
| I<br>Zn                              | 23.        | 24.                   | 20.        | 52<br>104 | 140      | 100        | 19.        | 20        | 25       |
| ZI                                   | 98         | 124                   | 124        | 104       | 140      | 2.0*       | 124        | 99<br>2 1 | 90       |
| ND<br>C-                             | 4.0        | 4.0                   | 5.0        | 4.1       | 0.0      | 5.0        | 4.0        | 5.1       | 5.2      |
| Cs<br>D-                             | 450        | 166                   | (0)        | 0.51      | 200      | 501        | ((0)       | 0.79      | 0.59     |
| Ба                                   | 459        | 400                   | 000        | 104       | 200      | 591        | 009        | 419       | 323      |
| La                                   |            |                       |            | 0.49      |          |            |            | 0.52      | 7.02     |
| Ce                                   |            |                       |            | 19.11     |          |            |            | 16.57     | 18.10    |
| PT                                   |            |                       |            | 2.75      |          |            |            | 2.83      | 2.39     |
| Na                                   |            |                       |            | 13.11     |          |            |            | 12.75     | 13.08    |
| Sm                                   |            |                       |            | 3.86      |          |            |            | 3.25      | 3.91     |
| Eu                                   |            |                       |            | 1.14      |          |            |            | 1.08      | 1.27     |
| Ga                                   |            |                       |            | 4.04      |          |            |            | 3.12      | 3.53     |
| lb                                   |            |                       |            | 0.70      |          |            |            | 0.47      | 0.63     |
| Dy                                   |            |                       |            | 4.37      |          |            |            | 3.08      | 3.88     |
| Ho                                   |            |                       |            | 0.94      |          |            |            | 0.76      | 0.75     |
| Er                                   |            |                       |            | 2.89      |          |            |            | 1.97      | 2.23     |
| Im                                   |            |                       |            | 0.42      |          |            |            | 0.27      | 0.34     |
| Yb                                   |            |                       |            | 2.77      |          |            |            | 1.72      | 2.38     |
| Lu                                   |            |                       |            | 0.42      |          |            |            | 0.30      | 0.32     |
| Ht                                   |            |                       |            | 2.80      |          |            |            | 2.10      | 2.17     |
| Ta                                   |            |                       |            | 0.21      |          |            |            | 0.14      | 0.19     |
| TI                                   |            |                       |            | 0.05      |          |            |            | 0.09      | 0.10     |
| Pb                                   |            |                       |            | 2.03      |          |            |            | 2.73      | 2.63     |
| Th                                   |            |                       |            | 0.59      |          |            |            | 1.57      | 0.91     |
| U<br>97 - 196 -                      |            |                       |            | 0.38      |          |            |            | 0.77      | 0.61     |
| °/Sr/ <sup>80</sup> Sr               |            |                       |            |           |          |            |            | 0.703347  | 0.703370 |
| <sup>143</sup> Nd/ <sup>144</sup> Nd |            |                       |            |           |          |            |            | 0.513048  | 0.513047 |
| <sup>206</sup> Pb/ <sup>204</sup> Pb |            |                       |            |           |          |            |            |           | 18.32    |
| <sup>208</sup> Pb/ <sup>204</sup> Pb |            |                       |            |           |          |            |            |           | 38.03    |
| <sup>207</sup> Pb/ <sup>204</sup> Pb |            |                       |            |           |          |            |            |           | 15.50    |

<sup>d</sup>Samples KIZ-17/2, KIZ-19, KIZ-21 and KIZ-22 are from old volcano basement, other samples are Quaternary age.



**Figure 5.** Electron microprobe traverses across plagioclase phenocrysts from a representative basaltic enclave. (a) unresorbed plagioclase and (b) resorbed plagioclase. Compositional profiles are shown in mol. % for An content and in ppm for Sr, Ba, and Fe concentrations. The abrupt in chemical composition near the crystal margins is indicated by arrows. Squares are data from the crystal cores, circles from the mantle, diamonds represent the rim and triangles are for microlites.

textured zone the plagioclase composition becomes more calcic up to  $An_{80}$ , whereas concentrations of Fe and Mg increase up to 5000 ppm and 550 ppm, respectively, and Sr and Ba values decrease. The rim zone Pl-3 is more sodic

than the sieve-textured zone, but not quite as Ab-rich as the core. Microlites near Pl-2 phenocrysts are similar in chemical composition to zones II and III of Pl-3 (inset Figures 5b, 6b).



**Figure 6.** Electron microprobe traverses across plagioclase phenocrysts from typical dacitic lava: (a) unresolved plagioclase PI-2 and (b) resorbed plagioclase PI-3. Symbols are the same as in Figure 5.

| Table 2. Wiles        | iopiooe a           | naryses of        | the plage        | ociase j         | Jienoer ysts                   | fioni the i |                 |                  | Camenat | κ <i>α)</i> . |            |                   |              |
|-----------------------|---------------------|-------------------|------------------|------------------|--------------------------------|-------------|-----------------|------------------|---------|---------------|------------|-------------------|--------------|
| Description           | S <sup>a</sup> , μm | Na <sub>2</sub> O | SiO <sub>2</sub> | K <sub>2</sub> O | Al <sub>2</sub> O <sub>3</sub> | CaO         | Total           | Fe               | Ti      | Sr            | Mg         | Ba                | An           |
|                       |                     | 1 4 ch            | 10.01            |                  | Pl 1 from e                    | nclave KI   | Z-07/1 (F       | Fig. 5a)         |         |               |            | 1.0               | 0.0.4        |
| core                  | 0                   | 1.10°             | 43.91            | 0.02             | 34.56                          | 18.26       | 98              | 4330             | 150     | 313           | 295        | n.d. <sup>c</sup> | 90.1         |
| core                  | 16                  | 1.09              | 45.29            | 0.02             | 35.12                          | 17.83       | 99              | 4400             | 102     | 507           | 314        | 50                | 89.9         |
| core                  | 33                  | 1.40              | 45.91            | 0.02             | 34.67                          | 17.27       | 99              | 3669             | 84      | 456           | 362        | n.d.              | 87.1         |
| core                  | 66                  | 1.18              | 45.22            | 0.02             | 34.77                          | 17.48       | 99              | 3/4/             | 96      | 532           | 320        | n.d.              | 89.0         |
| core                  | 92                  | 1.53              | 46.38            | 0.03             | 34.73                          | 17.26       | 100             | 3778             | 84      | 634           | 362        | n.d.              | 86.0         |
| mantle                | 118                 | 2.54              | 47.83            | 0.03             | 32.92                          | 15.60       | 99              | 3109             | 60      | 541           | 392        | n.d.              | 77.1         |
| mantle                | 125                 | 2.48              | 48.10            | 0.07             | 32.62                          | 15.55       | 99              | 3459             | 120     | 558           | 531        | 71                | 77.3         |
| mantle                | 138                 | 1.25              | 45.47            | 0.01             | 34.90                          | 17.56       | 99              | 3661             | 96      | 524           | 368        | n.d.              | 88.5         |
| mantle                | 170                 | 1.59              | 46.34            | 0.02             | 34.20                          | 17.14       | 99              | 4159             | 120     | 566           | 482        | 64                | 85.5         |
| mantle                | 207                 | 1.46              | 46.04            | 0.03             | 34.22                          | 17.21       | 99              | 4190             | 102     | 642           | 440        | n.d.              | 86.5         |
| mantle                | 230                 | 1.32              | 45.94            | 0.03             | 34.48                          | 17.58       | 99              | 4236             | 60      | 566           | 398        | n.d.              | 87.9         |
| mantle                | 246                 | 1.77              | 46.46            | 0.02             | 33.93                          | 17.02       | 99              | 4462             | 156     | 490           | 482        | n.d.              | 84.0         |
| mantle                | 252                 | 1.60              | 46.16            | 0.03             | 34.25                          | 17.15       | 99              | 4516             | 132     | 456           | 434        | n.d.              | 85.4         |
| mantle                | 259                 | 2.31              | 48.00            | 0.05             | 33.32                          | 15.69       | 99              | 4407             | 150     | 608           | 519        | 64                | 78.7         |
| mantle                | 266                 | 2.22              | 47.68            | 0.04             | 33.13                          | 15.95       | 99              | 4827             | 186     | 549           | 501        | 50                | 79.7         |
| rim                   | 275                 | 2.91              | 49.12            | 0.06             | 32.24                          | 14.66       | 99              | 4485             | 174     | 752           | 501        | 64                | 73.3         |
| rim                   | 282                 | 3.62              | 50.84            | 0.09             | 31.04                          | 13.37       | 99              | 3980             | 186     | 718           | 464        | 106               | 66.7         |
| rim                   | 285                 | 3.64              | 51.31            | 0.09             | 31.13                          | 13.53       | 100             | 3980             | 180     | 676           | 476        | 199               | 67.0         |
| rim                   | 292                 | 4.59              | 53.37            | 0.11             | 29.61                          | 11.57       | 99              | 3257             | 198     | 701           | 332        | 78                | 57.8         |
| rim                   | 295                 | 4.49              | 53.28            | 0.13             | 29.94                          | 12.12       | 100             | 3700             | 204     | 879           | 386        | 135               | 59.4         |
| rim                   | 305                 | 5.92              | 56.29            | 0.18             | 27.69                          | 9.36        | 99              | 2829             | 126     | 752           | 211        | 312               | 46.2         |
| rim                   | 328                 | 6.94              | 58.83            | 0.31             | 25.47                          | 7.44        | 99              | 3879             | 228     | 549           | 229        | 483               | 36.5         |
| M <sup>d</sup> , core | 351                 | 4.55              | 53.40            | 0.11             | 29.49                          | 11.69       | 99              | 3459             | 198     | 667           | 344        | 99                | 58.3         |
| M, rim                | 367                 | 6.16              | 57.05            | 0.23             | 26.70                          | 8.88        | 99              | 2923             | 144     | 600           | 241        | 312               | 43.7         |
| <i>.</i>              |                     |                   |                  |                  | Pl 1 fr                        | om enclav   | e KIZ-01        | /1               |         |               |            |                   |              |
| core                  | 7                   | 1.47              | 46.19            | 0.03             | 35.02                          | 17.21       | 100             | 3008             | n.d.    | 1436          | 308        | n.d.              | 92.0         |
| core                  | 33                  | 2.24              | 48.13            | 0.05             | 33.50                          | 15.90       | 100             | 2907             | n.d.    | 1808          | 362        | 92                | 87.4         |
| core                  | 43                  | 1.38              | 46.20            | 0.03             | 34.85                          | 17.29       | 100             | 3568             | 84      | 1301          | 332        | 50                | 92.5         |
| core                  | 63                  | 2.36              | 48.53            | 0.05             | 33.40                          | 15.83       | 100             | 3000             | n.d.    | 1402          | 398        | 163               | 86.8         |
| mantle                | 130                 | 1.63              | 45.44            | 0.04             | 33.33                          | 17.12       | 98              | 4524             | 138     | 414           | 669        | n.d.              | 85.1         |
| mantle                | 150                 | 1.66              | 46.93            | 0.03             | 34 20                          | 17.07       | 100             | 4081             | 132     | 482           | 416        | n d               | 91.0         |
| mantle                | 190                 | 1.80              | 47.09            | 0.03             | 34 20                          | 16.85       | 100             | 4602             | 132     | 431           | 476        | 71                | 90.2         |
| mantle                | 207                 | 2.09              | 47.78            | 0.04             | 33.75                          | 16.44       | 100             | 4151             | 174     | 439           | 482        | n.d.              | 88.5         |
| mantle                | 227                 | 146               | 46.47            | 0.03             | 34 50                          | 17 34       | 100             | 4477             | 108     | 456           | 428        | 99                | 92.1         |
| mantle                | 263                 | 1.10              | 45.88            | 0.03             | 35.04                          | 17.73       | 100             | 4415             | 102     | 431           | 356        | 64                | 93.6         |
| mantle                | 307                 | 1.15              | 45.00            | 0.03             | 34.82                          | 17.75       | 100             | 4547             | 96      | 532           | 368        | 99                | 93.2         |
| mantle                | 320                 | 1.25              | 47.32            | 0.03             | 34.02                          | 16.68       | 100             | 4508             | 108     | 684           | 308        | nd                | 80.0         |
| rim <sup>1e</sup>     | 320                 | 1.04              | 52 77            | 0.04             | 30.60                          | 12.56       | 100             | 3801             | 156     | 684           | 350        | 64                | 74.8         |
| rim1                  | 327                 | 6.04              | 57.07            | 0.10             | 27.32                          | 0.26        | 100             | 3801             | 174     | 501           | 302        | 100               | 507          |
| rim?                  | 3/3                 | 1.04              | 17.07            | 0.21             | 27.52                          | 16 47       | 100             | 1858             | 1/4     | 182           | J02<br>416 | 13                | 80.3         |
| rim2                  | 252                 | 2.14              | 47.42<br>50.45   | 0.04             | 21.70                          | 14.15       | 100             | 5279             | 204     | 541           | 410        | 71                | 09.5<br>91.5 |
| M aora                | 262                 | 2.02              | 52.02            | 0.08             | 20.80                          | 12 71       | 100             | 2922             | 126     | 719           | 202        | 02                | 76.0         |
| M, core               | 202                 | 5.92              | 52.05            | 0.09             | 30.80                          | 12./1       | 100             | 2022             | 120     | /10           | 242        | 92                | 70.0         |
| M, IIII               | 5/5                 | 0.01              | 57.45            | 0.24             | 2/.20                          | 9.09        | 100<br>VIZ 07 ( | 5555<br>Fig. 60) | 108     | 121           | 247        | 199               | 39.2         |
|                       | 02                  | 614               | 55.02            | 0.20             | 26 54                          |             | MIZ-07 (        | rig. 0a)         | a d     | 501           | 100        | 201               | 12 5         |
| core                  | 92                  | 0.14              | 50.92            | 0.30             | 20.34                          | 0.00        | 90              | 1/02             | n.a.    | 591           | 109        | 204               | 45.5         |
| core                  | 12/                 | 0.45              | 38.37<br>59.57   | 0.31             | 26.80                          | 8.30        | 100             | 1438             | n.d.    | 00/<br>574    | 109        | 248               | 41.0         |
| core                  | 196                 | 6.53              | 38.37            | 0.29             | 26.91                          | 8.32        | 101             | 1415             | n.d.    | 5/4           | 60         | 227               | 45.6         |
| core                  | 346                 | 6.01              | 5/.1/            | 0.25             | 27.51                          | 9.36        | 100             | 14//             | 60      | /43           | 96         | 170               | 40.6         |
| core                  | 5//                 | 6.39              | 58.28            | 0.31             | 26.68                          | 8.4/        | 100             | 1485             | n.d.    | 591           | 103        | 1/0               | 41.5         |
| core                  | 012                 | 6.19              | 58.25            | 0.31             | 26.80                          | 8.49        | 100             | 1461             | 60      | 642           | 12         | 149               | 42.3         |
| core                  | /38                 | 6.23              | 58.00            | 0.29             | 27.15                          | 8.99        | 101             | 1516             | 60      | 752           | 78         | 234               | 43.6         |
| mantle                | 773                 | 5.46              | 56.04            | 0.21             | 28.50                          | 10.09       | 100             | 1531             | n.d.    | 710           | 84         | 192               | 49.9         |
| mantle                | 900                 | 6.49              | 58.34            | 0.30             | 26.86                          | 8.51        | 100             | 1524             | 54      | 718           | 84         | 213               | 41.3         |
| mantle                | 981                 | 5.05              | 54.73            | 0.20             | 29.28                          | 11.03       | 100             | 1733             | n.d.    | 574           | 90         | 135               | 54.0         |
| mantle                | 1096                | 6.01              | 57.91            | 0.28             | 27.26                          | 8.93        | 100             | 1524             | 60      | 558           | 84         | 213               | 44.3         |
| mantle                | 1154                | 5.68              | 56.52            | 0.23             | 28.17                          | 9.85        | 100             | 1586             | n.d.    | 701           | 115        | 185               | 48.3         |
| mantle                | 1235                | 6.32              | 58.15            | 0.34             | 26.76                          | 8.55        | 100             | 1508             | 54      | 642           | 115        | 270               | 41.9         |

 Table 2. Microprobe analyses of the plagioclase phenocrysts from the Kizimen volcano (Kamchatka).

Table 2. (continued)

| Description         S-y, um         Nay,O         SiQ,         K-Q         Al,Q,         CaO         Total         Fe         Ti         Sr.         Mag         Ba         An           manthe         190         Al1         327         12.2         70.76         12.66         100         163         60.6         60.6         100         10.8         40.1         80.4         183           manthe         192         5.49         5.64         0.27         27.0         8.90         100         1531         60         76.0         9.02         21.3         44.1           manthe         255         6.29         5.78         0.30         27.16         8.79         100         176         60         75.8         9.02         21.3         47.2           manthe         24.5         5.28         5.24         0.28         27.70         8.06         100         184         66         57.4         10.9         21.4         11.2         10.0         13.3         23.4         12.1         10.0         13.6         60         57.4         10.3         23.4         11.2         10.0         13.6         60         57.4         13.4         13.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | · · · · ·   |                        |                   |                  |              |                                |               |           |              |          |                |            |            |               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|------------------------|-------------------|------------------|--------------|--------------------------------|---------------|-----------|--------------|----------|----------------|------------|------------|---------------|
| mantle         1396         411         52.75         0.12         30.76         12.66         100         1663         60         634         66         24.3         39.1           muntle         1592         5.49         56.64         0.25         28.09         9.89         100         1601         n.d.         718         84         185         49.2           mantle         1583         6.06         57.74         0.27         27.20         89.09         100         1555         n.d.         532         78.8         270         50.5           mantle         2025         5.67         56.48         0.24         2.80.7         75         100         1726         60         538         890         220         42.3           mantle         2345         6.31         82.9         0.22         2.72.0         86.6         101         1788         66         574         109         248         42.4           mantle         2355         5.5.7         5.64         0.22         2.72.0         86.6         101         1819         54         54.3         92.1         92.3         45.1           mantle         2350         5.29                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Description | S <sup>a</sup> , μm    | Na <sub>2</sub> O | SiO <sub>2</sub> | К,О          | Al <sub>2</sub> O <sub>3</sub> | CaO           | Total     | Fe           | Ti       | Sr             | Mg         | Ва         | An            |
| mantle         1465         6.72         59.10         0.32         26.45         8.05         101         1399         n.d.         634         632         141           mantle         1858         6.06         57.74         0.27         27.20         8.90         100         1531         6.0         760         90         123         44.1           mantle         2065         6.10         57.73         0.31         27.44         9.01         101         1586         6.0         6.34         44         248         44.1           mantle         2325         6.57         57.89         0.30         27.16         8.79         100         1640         6.0         743         109         206         51.6           mantle         2355         5.29         5.29         0.28         27.37         8.66         101         2169         6.0         743         139         24.4         4.4           mantle         2365         5.29         5.49         0.28         27.37         9.14         100         1834         n.d.         549         1.20         4.24         53.1         53.1         53.4         53.1         53.1         53.1         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | mantle      | 1396                   | 4.11              | 52.75            | 0.12         | 30.76                          | 12.66         | 100       | 1663         | 60       | 634            | 103        | 156        | 62.6          |
| mantle         1922         54.49         56.64         0.25         28.09         9.89         100         1001         n.d.         718         84         115         44.2           mantle         1992         54.2         56.00         0.21         28.36         10.25         100         1535         n.d.         532         78         20         54.5           mantle         2055         6.10         57.79         0.31         27.16         8.79         100         1726         60         538         90         22.0         24.2         8.79         100         1726         60         534         84         42.4           mantle         242         5.28         55.42         0.20         28.75         10.43         100         1788         66         574         10.7         44.7           mantle         250         5.29         55.47         0.20         28.74         10.86         100         1814         n.d.         473         10.9         10.2         48.5           mantle         3242         59.6         57.48         0.28         27.37         9.14         10.0         1834         n.d.         473         10.9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mantle      | 1465                   | 6.72              | 59.10            | 0.32         | 26.45                          | 8.05          | 101       | 1399         | n.d.     | 634            | 66         | 241        | 39.1          |
| mamtle         1858         6.06         57.4         0.27         27.20         8.90         100         1531         6.07         760         90.2         134         44.1           mamtle         2065         6.10         57.73         0.31         27.44         9.01         101         1586         6.0         634         84         248         44.1           mantle         235         6.29         57.89         0.30         27.16         87.9         100         1640         60         743         109         266         51.6           mantle         2350         5.29         5.29         0.28         27.0         8.66         101         2169         6.0         47.3         109         24.4         4.44           mantle         265         5.29         5.47         0.28         27.47         9.08         100         1834         n.d.         549         4.24         530           mantle         3058         5.75         5.6.4         0.28         27.37         9.14         100         1834         n.d.         549         4.32         54.4         57.3           mantle         3058         5.70         5.6.4         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mantle      | 1592                   | 5.49              | 56.64            | 0.25         | 28.09                          | 9.89          | 100       | 1601         | n.d.     | 718            | 84         | 185        | 49.2          |
| mantle         1892         5.42         5.60         0.21         28.36         10.25         100         1586         60         634         84         248         44.1           mantle         2155         6.29         57.89         0.30         27.16         8.79         100         126         60         548         80         22.0         42.8           mantle         2342         5.81         5.42         0.20         28.75         10.43         100         184         60         541         109         266         51.6           mantle         2550         5.29         55.47         0.20         28.62         10.36         100         1834         4.6         549         115         170         44.7           mantle         308         5.57         6.22         28.73         9.48         100         1834         4.51         110         123         66         600         109         27.4         48.8           mantle         3124         57.69         6.24         27.83         9.95         100         363         138         547         115         255         47.2           mantle         3149         57.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mantle      | 1858                   | 6.06              | 57.74            | 0.27         | 27.20                          | 8.90          | 100       | 1531         | 60       | 760            | 90         | 213        | 44.1          |
| mante         2065         6.10         57.39         0.31         27.44         9.01         101         1886         60         63.4         84         24.8         44.1           mantle         2262         58.7         56.48         0.24         28.07         9.75         100         1640         60         73.4         100         26.6         57.4         100         26.6         57.4         100         1819         54         100         26.6         57.4         100         1819         54         55.8         115         170         51.4           mantle         2665         6.01         57.41         0.20         28.42         103.6         100         1819         54         51.4         170         44.7           mantle         0.38         57.7         56.44         0.23         28.11         9.80         100         189         44.1         115         25.5         47.2         48.8         40.1         110         100         3630         188         57.4         30.8         74.7         9.84         100         3630         185         54.9         30.8         n.4.         54.1           mantle         3169         57                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mantle      | 1892                   | 5.42              | 56.00            | 0.21         | 28.36                          | 10.25         | 100       | 1555         | n.d.     | 532            | 78         | 270        | 50.5          |
| mantle         2135         6.29         57.80         0.30         27.16         8.79         100         1726         60         55.8         90         22.0         42.8           mantle         2342         5.28         55.42         0.20         28.75         10.43         100         1788         66         67.4         109         20.6         51.6           mantle         2350         5.29         55.47         0.20         28.62         10.36         100         1834         a.4.         549         115         170         51.4           mantle         2752         54.24         0.20         27.44         112         100         1334         a.4.         549         115         25.4         51.7           mantle         3369         570         56.24         0.23         28.11         100         1959         66.0         000         125         47.2           mantle         3369         570         56.24         0.23         28.11         100         1381         135         54.24         0.24         28.84         10.99         160         353         135         54.24         12.4         134         133         135                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mantle      | 2065                   | 6.10              | 57.73            | 0.31         | 27.44                          | 9.01          | 101       | 1586         | 60       | 634            | 84         | 248        | 44.1          |
| mantle         2262         587         56.48         0.24         28.07         9.75         100         1640         60         743         102         206         51.6           mantle         2435         6.31         58.29         0.28         27.20         8.66         101         2169         60         47.3         100         1819         54         55.47         0.20         28.62         103.6         100         1819         54         55.8         115         170         51.4           mantle         2665         6.01         57.44         0.20         29.44         112.1         100         1819         54         10.5         72.4         8.55         51.1           mantle         3369         5.70         56.24         0.23         28.11         9.80         100         28.51         115         25.5         47.2         48.5           mantle         3369         5.70         56.44         0.24         27.83         9.50         100         28.51         10.5         10.5         11.5         11.5         11.5         11.5         11.5         11.5         11.5         11.5         11.5         11.5         11.5         11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | mantle      | 2135                   | 6.29              | 57.89            | 0.30         | 27.16                          | 8.79          | 100       | 1726         | 60       | 558            | 90         | 220        | 42.8          |
| mantic         2342         5.28         5.24         0.20         28.75         10.43         100         1788         66         473         96         248         24.4           mantic         2550         5.29         55.47         0.20         28.62         10.36         100         1819         54         558         115         170         51.4           mantic         2765         59.64         0.20         29.44         11.21         100         1834         n.d.         549         115         157         157           mantic         3245         59.6         57.48         0.28         27.37         9.14         100         1881         n.d.         574         115         254         57.4           mantic         3340         49.8         54.92         0.20         28.80         11.19         100         3630         138         54.93         308         14.5         54.4           rim         3381         49.7         54.84         0.00         34.94         154.4         100         3539         102         55.8         30.8         1.35         53.9           M1, core         3462         54.38         0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | mantle      | 2262                   | 5.87              | 56.48            | 0.24         | 28.07                          | 9.75          | 100       | 1640         | 60       | 743            | 72         | 213        | 47.2          |
| mantle         2435         6.31         58.29         0.28         27.20         8.66         101         21.69         60         673         96         248         42.4           mantle         2665         6.01         57.61         0.28         27.47         9.08         100         1814         n.d.         60         574         139         234         55.6         56.24         0.23         28.11         9.89         100         1959         66         600         109         227         48.8           mantle         3369         5.75         56.24         0.23         27.83         9.50         100         188         n.d.         473         108         125         47.2           mantle         3369         5.70         56.94         0.24         27.83         9.50         100         3631         138         574         108         125         47.7           mantle         3381         4.97         55.08         0.19         28.86         10.97         100         359         102         55.83         10.8         54.7           M1, core         3519         4.16         52.89         0.10         30.41         12.59                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | mantle      | 2342                   | 5.28              | 55.42            | 0.20         | 28.75                          | 10.43         | 100       | 1788         | 66       | 574            | 109        | 206        | 51.6          |
| mantle         2550         5.2.9         5.4.7         0.2.0         2.8.6.2         10.3.6         10.0         1819         5.4.         5.58         11.5         17.0         51.4           mantle         2702         4.9.2         54.59         0.2.0         2.9.44         11.21         10.0         1834         n.d.         549         11.9         2.3.4         55.1           mantle         3242         5.9.6         57.4.8         0.2.3         2.8.1         9.5.0         10.0         2.8.5         7.4         1.0.5         4.8.8           mantle         3370         4.9.8         54.92         2.2.8.84         10.99         10.0         3653         1.20         54.9         3.22         n.d.         54.7           rim         3381         4.9.7         5.0.8         0.19         2.8.84         10.99         10.0         3653         1.20         54.94         3.22         n.d.         54.7           rim         3382         5.0.4         5.2.89         0.0.1         3.41         15.49         10.0         342.0         15.6         64.7         7.6         56.6         47.6         2.66         55.8         5.9         5.9         7.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mantle      | 2435                   | 6.31              | 58.29            | 0.28         | 27.20                          | 8.66          | 101       | 2169         | 60       | 473            | 96         | 248        | 42.4          |
| mantle         2665         6.01         57.61         0.28         27.47         9.08         100         1834         n.d.         574         113         170         44.7           mantle         3058         5.57         56.24         0.23         28.11         9.89         100         1959         66         600         109         122         48.8           mantle         3342         5.96         57.48         0.23         27.83         9.50         100         1881         n.d.         473         108         145         47.2           rim         3370         49.8         54.92         0.20         28.86         10.97         100         3633         120         54.93         308         1.4.         54.47           rim         3381         4.97         56.88         0.04         33.49         15.84         100         370         125         54.77         1.4         7.4         7.4         7.4         7.4         7.4         7.4         7.4         7.4         7.4         7.4         7.4         7.4         7.4         7.6         56.6         476         2.0         7.5         7.7         7.4         7.6         7.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | mantle      | 2550                   | 5.29              | 55.47            | 0.20         | 28.62                          | 10.36         | 100       | 1819         | 54       | 558            | 115        | 170        | 51.4          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mantle      | 2665                   | 6.01              | 57.61            | 0.28         | 27.47                          | 9.08          | 100       | 1834         | n.d.     | 549            | 115        | 170        | 44.7          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mantle      | 2792                   | 4.92              | 54.59            | 0.20         | 29.44                          | 11.21         | 100       | 2130         | 60       | 574            | 139        | 234        | 55.1          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | mantle      | 3058                   | 5.57              | 56.24            | 0.23         | 28.11                          | 9.89          | 100       | 1959         | 66       | 600            | 109        | 227        | 48.8          |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | mantle      | 3242                   | 5.96              | 57.48            | 0.28         | 27.37                          | 9.14          | 100       | 1881         | n.d.     | 473            | 109        | 192        | 45.1          |
| $ \begin{array}{cccccc} rind rind rind rind rind rind rind rind$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mantle      | 3369                   | 5.70              | 56.94            | 0.24         | 27.83                          | 9.50          | 100       | 2091         | 78       | 574            | 115        | 255        | 47.2          |
| $ \begin{array}{cccccc} rind rind rind rind rind rind rind rind$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rim         | 3370                   | 4.98              | 54.92            | 0.20         | 28.80                          | 11.19         | 100       | 3630         | 138      | 574            | 308        | 149        | 54.7          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | rim         | 3381                   | 4.97              | 55.08            | 0.19         | 28.84                          | 10.99         | 100       | 3653         | 120      | 549            | 332        | n.d.       | 54.4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rim         | 3382                   | 5.04              | 54.87            | 0.20         | 28.86                          | 10.97         | 100       | 3599         | 102      | 558            | 308        | 135        | 53.9          |
| M1, mantle         3519         4.16         52.89         0.10         30.41         12.59         100         3428         162         693         368         n.d.         62.2           M1, mantle         3577         2.69         49.42         0.06         32.77         15.37         100         4773         276         566         476         206         55.8           M2, crore         3692         3.65         51.39         0.08         31.27         13.49         100         4542         210         651         513         50         66.8           W2, rim         3750         4.69         54.37         0.18         29.26         11.43         100         5402         312         55.38         241         47.4           core         21         5.83         55.9         0.22         27.68         9.66         100         1912         60         465         84         241         47.4           core         204         5.38         55.99         0.21         28.42         10.17         100         1904         60         634         133         284         47.1           core         245         5.81         57.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1, core    | 3462                   | 2.38              | 48.45            | 0.04         | 33.49                          | 15.84         | 100       | 3840         | 156      | 803            | 295        | 64         | 78.4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1, mantle  | 3519                   | 4.16              | 52.89            | 0.10         | 30.41                          | 12.59         | 100       | 3428         | 162      | 693            | 368        | n.d.       | 62.2          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1, mantle  | 3577                   | 2.69              | 49.42            | 0.06         | 32.77                          | 15.37         | 100       | 4174         | 138      | 549            | 452        | n.d.       | 75.7          |
| $ \begin{array}{cccccc} 3692 & 3.65 & 51.39 & 0.08 & 31.27 & 13.49 & 100 & 4524 & 210 & 651 & 513 & 50 & 66.8 \\ \mathrm{M2, rim} & 3750 & 4.69 & 54.37 & 0.18 & 29.26 & 11.43 & 100 & 5402 & 312 & 735 & 488 & 241 & 56.8 \\ \mathrm{P1 2 \ from \ dacitic \ lava \ KIZ-OT \\ \mbox{core} & 21 & 5.83 & 56.38 & 0.26 & 27.27 & 9.40 & 99 & 2021 & 60 & 465 & 84 & 241 & 47.4 \\ \mbox{core} & 139 & 5.74 & 56.84 & 0.25 & 27.77 & 9.50 & 100 & 2060 & 54 & 651 & 127 & 263 & 47.1 \\ \mbox{core} & 204 & 5.38 & 55.99 & 0.21 & 28.42 & 10.17 & 100 & 1974 & 54 & 667 & 90 & 142 & 50.5 \\ \mbox{core} & 268 & 5.74 & 56.84 & 0.24 & 27.76 & 9.51 & 100 & 2083 & n.d. \ 498 & 133 & 156 & 46.0 \\ \mbox{core} & 439 & 5.89 & 57.18 & 0.26 & 27.57 & 9.36 & 100 & 2083 & n.d. \ 498 & 133 & 156 & 46.0 \\ \mbox{core} & 450 & 5.81 & 57.28 & 0.25 & 27.68 & 9.38 & 100 & 2083 & n.d. \ 498 & 133 & 156 & 46.0 \\ \mbox{core} & 450 & 5.81 & 57.28 & 0.25 & 27.68 & 9.38 & 100 & 2083 & n.d. \ 498 & 133 & 156 & 46.0 \\ \mbox{core} & 450 & 5.81 & 57.28 & 0.25 & 27.68 & 9.38 & 100 & 2023 & 78 & 574 & 121 & 185 & 54.5 \\ \mbox{mantle} & 514 & 4.56 & 53.75 & 0.18 & 29.72 & 11.65 & 100 & 2213 & 84 & 574 & 121 & 185 & 54.5 \\ \mbox{mantle} & 611 & 4.67 & 53.87 & 0.17 & 29.85 & 11.65 & 100 & 2213 & 78 & 574 & 121 & 185 & 54.5 \\ \mbox{mantle} & 611 & 4.67 & 53.87 & 0.17 & 0.25 & 27.81 & 9.39 & 100 & 2052 & 60 & 549 & 109 & 241 & 47.2 \\ \mbox{mantle} & 750 & 4.35 & 57.77 & 0.13 & 30.61 & 1.248 & 100 & 2417 & 78 & 532 & 127 & 106 & 60.9 \\ \mbox{mantle} & 750 & 4.35 & 55.41 & 0.23 & 28.58 & 10.46 & 100 & 2573 & 108 & 558 & 362 & 121 & 51.5 \\ \mbox{mantle} & 782 & 3.32 & 50.94 & 0.10 & 31.81 & 13.79 & 100 & 2055 & 84 & 558 & 133 & 57 & 69.2 \\ \mbox{mantle} & 784 & 52.7 & 55.46 & 0.21 & 28.70 & 10.63 & 100 & 2373 & 108 & 558 & 362 & 121 & 51.5 \\ \mbox{mantle} & 846 & 5.03 & 55.12 & 0.21 & 28.70 & 10.63 & 100 & 2373 & 108 & 558 & 362 & 121 & 51.5 \\ \mbox{mantle} & 846 & 5.03 & 55.12 & 0.21 & 28.70 & 10.6 & 3100 & 2373 & 166 & 659 & 115 & 234 & 51.7 \\ \mbox{mantle} & 846 & 5.03 & 55.12 & 0.21 & 28.70 & 10.63 & $                                                                                                                                                                                                                                                                  | M1, rim     | 3635                   | 4.82              | 54.55            | 0.17         | 29.20                          | 11.28         | 100       | 4773         | 276      | 566            | 476        | 206        | 55.8          |
| $ \begin{array}{cccccc} M2, \ rim \\ core \\ 21 \\ 5.83 \\ 56.38 \\ 56.38 \\ 0.26 \\ 77.27 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2 \\ 77.2$ | M2, core    | 3692                   | 3.65              | 51.39            | 0.08         | 31.27                          | 13.49         | 100       | 4524         | 210      | 651            | 513        | 50         | 66.8          |
| core         21         5.83         5.6,38         0.26         27.27         9.40         99         2021         60         583         115         213         46.4           core         139         5.74         56.51         0.22         27.68         9.66         100         1912         60         465         84         241         47.4           core         139         5.74         56.84         0.25         27.77         9.50         100         1906         54         657         9.0142         50.5           core         204         5.88         57.18         0.26         27.57         9.36         100         1990         60         634         133         284         47.1           core         430         5.88         57.18         0.26         27.57         9.36         100         2023         78         566         96         78         58.0           mantle         514         4.56         53.75         0.18         29.72         11.68         100         2213         78         507         96         206         57.4           mantle         611         4.57         53.77         0.13 <th< td=""><td>M2, rim</td><td>3750</td><td>4.69</td><td>54.37</td><td>0.18</td><td>29.26</td><td>11.43</td><td>100</td><td>5402</td><td>312</td><td>735</td><td>488</td><td>241</td><td>56.8</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M2, rim     | 3750                   | 4.69              | 54.37            | 0.18         | 29.26                          | 11.43         | 100       | 5402         | 312      | 735            | 488        | 241        | 56.8          |
| core         21         5.83         56.38         0.26         27.27         9.40         99         2021         60         683         115         213         46.4           core         139         5.74         56.84         0.25         27.77         9.50         100         2060         54         651         127         263         47.1           core         204         5.38         55.99         0.21         28.42         10.17         100         1994         54         667         90         142         50.5           core         268         5.74         56.84         0.24         27.76         9.36         100         1990         60         634         133         156         46.0           core         450         5.81         57.28         0.25         27.68         9.38         100         1998         60         456         103         22.7         46.4           mantle         514         4.56         53.75         0.18         29.72         11.68         100         22.23         78         566         96         78         58.0           mantle         621         4.65         53.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |             |                        |                   |                  |              | Pl 2 from                      | m dacitic     | lava KIZ- | -07          |          |                |            |            |               |
| core         75         5.77         56.51         0.22         27.68         9.66         100         2060         54         651         127         263         47.1           core         204         5.38         55.99         0.21         28.42         10.17         100         1974         54         667         90         142         50.5           core         268         5.74         56.84         0.24         27.76         9.51         100         1990         60         634         133         284         47.1           core         450         5.81         57.28         0.25         27.68         9.38         100         1998         60         456         103         227         46.4           mantle         514         4.56         53.75         0.18         29.72         11.68         100         2215         84         574         121         185         54.5           mantle         611         4.67         53.87         0.17         29.85         11.65         100         2239         78         507         96         206         57.4           mantle         611         5.45         50.07         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | core        | 21                     | 5.83              | 56.38            | 0.26         | 27.27                          | 9.40          | 99        | 2021         | 60       | 583            | 115        | 213        | 46.4          |
| core         139         5.74         56.84         0.25         27.77         9.50         100         1904         54         651         127         263         47.1           core         204         5.38         55.99         0.21         28.42         10.17         100         1974         54         667         90         142         50.5           core         439         5.89         57.18         0.26         27.57         9.36         100         2083         n.d.         498         133         156         46.0           core         450         5.81         57.28         0.25         27.68         9.38         100         2023         78         566         96         78         58.0           mantle         514         4.67         53.87         0.17         29.85         11.65         100         2239         78         507         96         206         57.4           mantle         621         5.65         57.07         0.25         27.81         9.39         100         2052         60         549         109         221         47.2           mantle         621         4.35         52.77         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | core        | 75                     | 5.77              | 56.51            | 0.22         | 27.68                          | 9.66          | 100       | 1912         | 60       | 465            | 84         | 241        | 47.4          |
| core         204         5.38         55.99         0.21         28.42         10.17         100         1974         54         667         90         142         50.5           core         268         5.74         56.84         0.24         27.76         9.51         100         2983         n.d.         498         133         156         46.0           core         450         5.81         57.28         0.25         27.68         9.38         100         1298         60         456         103         227         46.4           mantle         514         4.56         53.75         0.18         29.72         11.68         100         2215         84         574         121         185         54.5           mantle         611         4.67         53.87         0.17         29.85         11.65         100         2239         78         507         96         206         57.4           mantle         621         5.65         57.07         0.23         28.58         100         2417         78         532         127         106         60.9           mantle         750         4.35         52.77         0.13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | core        | 139                    | 5.74              | 56.84            | 0.25         | 27.77                          | 9.50          | 100       | 2060         | 54       | 651            | 127        | 263        | 47.1          |
| core         268         5.4         56.84         0.24         27.76         9.51         100         1990         60         634         133         284         47.1           core         439         5.89         57.18         0.26         27.57         9.36         100         2083         n.d.         498         133         156         46.0           core         450         5.81         57.28         0.25         27.68         9.38         100         1223         78         566         96         78         58.0           mantle         514         4.56         53.75         0.18         29.72         11.68         100         2213         78         566         96         78         58.0           mantle         611         4.67         53.87         0.17         29.85         11.65         100         2213         78         507         96         20.6         57.4           mantle         621         5.65         57.07         0.23         27.88         10.46         100         2417         78         532         121         106         30         55.4         10.23         27.85         10.46         100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | core        | 204                    | 5.38              | 55.99            | 0.21         | 28.42                          | 10.17         | 100       | 1974         | 54       | 667            | 90         | 142        | 50.5          |
| core4395.895.7.180.26 $27.57$ 9.361002083n.d.4981.3315640.0core4505.8157.280.2527.689.3810019986045610322746.4mantle5144.5653.750.1829.7211.68100221378566967858.0mantle6114.6753.870.1729.8511.651002239785079620657.4mantle6215.6557.070.2527.789.391002052605499022046.6mantle6865.8456.990.2427.709.471001982546939022046.6mantle7504.3552.770.1330.6112.4810024177853212110660.9mantle7823.3250.940.1031.8113.7910025577865912110670.3mantle7933.2350.870.0931.9214.1010025577855912110670.3mantle8145.275.5460.2128.7610.4810020056051510917047.0mantle8254.1852.710.1330.7212.52100255778524133                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | core        | 268                    | 5.74              | 56.84            | 0.24         | 27.76                          | 9.51          | 100       | 1990         | 60       | 634            | 133        | 284        | 47.1          |
| core $450$ $5.81$ $57.28$ $0.25$ $27.68$ $9.38$ $100$ $1998$ $60$ $456$ $103$ $227$ $46.4$ mantle $514$ $4.56$ $53.75$ $0.18$ $29.72$ $11.68$ $100$ $2223$ $78$ $566$ $96$ $78$ $58.0$ mantle $525$ $4.96$ $54.64$ $0.19$ $29.16$ $11.02$ $100$ $2215$ $84$ $574$ $121$ $185$ $54.5$ mantle $611$ $4.67$ $53.87$ $0.17$ $29.85$ $11.65$ $100$ $2239$ $78$ $507$ $96$ $206$ $57.4$ mantle $611$ $4.67$ $53.87$ $0.17$ $29.85$ $11.65$ $100$ $2239$ $78$ $507$ $96$ $206$ $57.4$ mantle $686$ $5.84$ $56.99$ $0.24$ $27.70$ $9.47$ $100$ $1982$ $54$ $693$ $90$ $220$ $46.6$ mantle $750$ $4.35$ $52.77$ $0.13$ $30.61$ $12.48$ $100$ $2417$ $78$ $532$ $127$ $106$ $60.9$ mantle $761$ $5.30$ $55.41$ $0.23$ $28.58$ $10.46$ $100$ $2573$ $108$ $558$ $362$ $121$ $51.5$ mantle $782$ $3.23$ $50.87$ $0.99$ $31.92$ $14.10$ $100$ $2557$ $78$ $659$ $121$ $106$ $70.3$ mantle $804$ $5.82$ $56.91$ $0.21$ $28.76$ $10.48$ <td>core</td> <td>439</td> <td>5.89</td> <td>57.18</td> <td>0.26</td> <td>27.57</td> <td>9.36</td> <td>100</td> <td>2083</td> <td>n.d.</td> <td>498</td> <td>133</td> <td>156</td> <td>46.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | core        | 439                    | 5.89              | 57.18            | 0.26         | 27.57                          | 9.36          | 100       | 2083         | n.d.     | 498            | 133        | 156        | 46.0          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | core        | 450                    | 5.81              | 57.28            | 0.25         | 27.68                          | 9.38          | 100       | 1998         | 60<br>70 | 456            | 103        | 227        | 46.4          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mantle      | 514                    | 4.56              | 53./5            | 0.18         | 29.72                          | 11.68         | 100       | 2223         | /8       | 566            | 96         | /8         | 58.0          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mantle      | 525                    | 4.96              | 54.64            | 0.19         | 29.16                          | 11.02         | 100       | 2215         | 84       | 5/4            | 121        | 185        | 54.5          |
| mantle $621$ $5.65$ $5.07$ $0.25$ $2.7.81$ $9.39$ $100$ $2052$ $60$ $549$ $109$ $241$ $47.2$ mantle $686$ $5.84$ $56.99$ $0.24$ $27.70$ $9.47$ $100$ $1982$ $54$ $693$ $90$ $220$ $46.6$ mantle $750$ $4.35$ $52.77$ $0.13$ $30.61$ $12.48$ $100$ $2417$ $78$ $532$ $127$ $106$ $60.9$ mantle $761$ $5.30$ $55.41$ $0.23$ $28.58$ $10.46$ $100$ $2573$ $108$ $558$ $362$ $121$ $51.5$ mantle $793$ $3.23$ $50.87$ $0.09$ $31.92$ $14.10$ $100$ $2565$ $84$ $558$ $133$ $57$ $69.2$ mantle $804$ $5.82$ $56.91$ $0.23$ $27.85$ $9.59$ $100$ $2005$ $60$ $515$ $109$ $170$ $47.0$ mantle $814$ $5.27$ $55.46$ $0.21$ $28.70$ $10.63$ $100$ $2033$ $60$ $659$ $115$ $234$ $51.7$ mantle $825$ $4.18$ $52.71$ $0.13$ $30.72$ $12.52$ $100$ $2557$ $78$ $524$ $133$ $106$ $61.9$ mantle $836$ $5.03$ $55.12$ $0.21$ $28.70$ $10.63$ $100$ $2394$ $108$ $549$ $181$ $177$ $53.2$ mantle $836$ $50.3$ $55.75$ $0.22$ $27.80$ $9.30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mantle      | 611                    | 4.6/              | 53.87            | 0.17         | 29.85                          | 11.05         | 100       | 2239         | /8       | 507            | 96         | 206        | 57.4          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mantle      | 621                    | 5.05              | 57.07            | 0.25         | 27.81                          | 9.39          | 100       | 2052         | 60<br>54 | 549            | 109        | 241        | 47.2          |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | mantle      | 080                    | 5.84              | 50.99            | 0.24         | 27.70                          | 9.4/          | 100       | 1982         | 54<br>70 | 693            | 90         | 220        | 46.6          |
| Infantle $761$ $5.30$ $53.41$ $0.23$ $28.38$ $10.46$ $100$ $2573$ $108$ $538$ $502$ $121$ $51.3$ mantle $782$ $3.32$ $50.94$ $0.10$ $31.81$ $13.79$ $100$ $2565$ $84$ $558$ $133$ $57$ $69.2$ mantle $793$ $3.23$ $50.87$ $0.09$ $31.92$ $14.10$ $100$ $2557$ $78$ $659$ $121$ $106$ $70.3$ mantle $804$ $5.82$ $56.91$ $0.23$ $27.85$ $9.59$ $100$ $2005$ $60$ $515$ $109$ $170$ $47.0$ mantle $814$ $5.27$ $55.46$ $0.21$ $28.76$ $10.48$ $100$ $2083$ $60$ $659$ $115$ $234$ $51.7$ mantle $825$ $4.18$ $52.71$ $0.13$ $30.72$ $12.52$ $100$ $2374$ $108$ $549$ $181$ $177$ $53.2$ mantle $836$ $5.03$ $55.12$ $0.21$ $28.70$ $10.63$ $100$ $2394$ $108$ $549$ $181$ $177$ $53.2$ mantle $846$ $5.70$ $56.91$ $0.24$ $27.93$ $9.67$ $100$ $2091$ $66$ $482$ $133$ $170$ $47.7$ mantle $846$ $5.70$ $56.91$ $0.24$ $27.93$ $9.67$ $100$ $2130$ $54$ $566$ $133$ $220$ $45.5$ rim1 $996$ $4.43$ $53.19$ $0.17$ $29.95$ $12.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mantle      | /50                    | 4.35              | 55 41            | 0.13         | 30.61                          | 12.48         | 100       | 2417         | /8       | 550            | 127        | 106        | 60.9<br>51.5  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | manue       | 701                    | 2.20              | 50.04            | 0.25         | 20.30                          | 10.40         | 100       | 2373         | 108      | 550<br>550     | 302<br>122 | 121        | 51.5          |
| manue $753$ $5.23$ $50.87$ $0.057$ $51.92$ $14.10$ $100$ $2337$ $78$ $0.59$ $121$ $100$ $70.3$ mantle $804$ $5.82$ $56.91$ $0.23$ $27.85$ $9.59$ $100$ $2005$ $60$ $515$ $109$ $170$ $47.0$ mantle $814$ $5.27$ $55.46$ $0.21$ $28.76$ $10.48$ $100$ $2083$ $60$ $659$ $115$ $234$ $51.7$ mantle $825$ $4.18$ $52.71$ $0.13$ $30.72$ $12.52$ $100$ $2257$ $78$ $524$ $133$ $106$ $61.9$ mantle $836$ $5.03$ $55.12$ $0.21$ $28.70$ $10.63$ $100$ $2394$ $108$ $549$ $181$ $177$ $53.2$ mantle $836$ $5.03$ $55.12$ $0.24$ $27.93$ $9.67$ $100$ $2091$ $66$ $482$ $133$ $170$ $47.7$ mantle $932$ $5.98$ $57.05$ $0.25$ $27.80$ $9.30$ $100$ $2130$ $54$ $566$ $133$ $220$ $45.5$ rim1 $996$ $4.43$ $53.19$ $0.17$ $29.95$ $12.02$ $100$ $3762$ $102$ $414$ $344$ $85$ $59.4$ rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $2371$ $66$ $727$ $175$ $177$ $47.0$ rim2 $1058$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ </td <td>manue</td> <td>/02<br/>703</td> <td>3.32</td> <td>50.94</td> <td>0.10</td> <td>31.01</td> <td>13./9</td> <td>100</td> <td>2505</td> <td>04<br/>78</td> <td>550</td> <td>133</td> <td>57<br/>106</td> <td>09.2<br/>70.2</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | manue       | /02<br>703             | 3.32              | 50.94            | 0.10         | 31.01                          | 13./9         | 100       | 2505         | 04<br>78 | 550            | 133        | 57<br>106  | 09.2<br>70.2  |
| mattle $5.62$ $5.62$ $5.67$ $0.23$ $2.7.63$ $5.35$ $100$ $2003$ $60$ $515$ $109$ $170$ $47.0$ mantle $814$ $5.27$ $55.46$ $0.21$ $28.76$ $10.48$ $100$ $2083$ $60$ $659$ $115$ $234$ $51.7$ mantle $825$ $4.18$ $52.71$ $0.13$ $30.72$ $12.52$ $100$ $2557$ $78$ $524$ $133$ $106$ $61.9$ mantle $836$ $5.03$ $55.12$ $0.21$ $28.70$ $10.63$ $100$ $2394$ $108$ $549$ $181$ $177$ $53.2$ mantle $846$ $5.70$ $56.91$ $0.24$ $27.93$ $9.67$ $100$ $2091$ $66$ $482$ $133$ $170$ $47.7$ mantle $932$ $5.98$ $57.05$ $0.25$ $27.80$ $9.30$ $100$ $2130$ $54$ $566$ $133$ $220$ $45.5$ rim1 $996$ $4.43$ $53.19$ $0.17$ $29.95$ $12.02$ $100$ $37c2$ $102$ $414$ $344$ $85$ $59.4$ rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $3723$ $174$ $642$ $308$ $177$ $51.3$ rim2 $1058$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ $100$ $3078$ $132$ $867$ $163$ $106$ $65.5$ rim2 $1093$ $5.08$ $54.64$ $0.20$ $28.97$ $11.00$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | manue       | 193                    | 5.23<br>5.82      | 56.01            | 0.09         | 51.92<br>27.95                 | 0.50          | 100       | 2005         | /0<br>60 | 515            | 121        | 170        | /0.3<br>/7.0  |
| matter $6.47$ $5.27$ $55.46$ $0.21$ $28.70$ $10.46$ $100$ $2085$ $60$ $6.59$ $113$ $234$ $51.7$ mantle $825$ $4.18$ $52.71$ $0.13$ $30.72$ $12.52$ $100$ $2557$ $78$ $524$ $133$ $106$ $61.9$ mantle $836$ $5.03$ $55.12$ $0.21$ $28.70$ $10.63$ $100$ $2394$ $108$ $549$ $181$ $177$ $53.2$ mantle $846$ $5.70$ $56.91$ $0.24$ $27.93$ $9.67$ $100$ $2091$ $66$ $482$ $133$ $170$ $47.7$ mantle $932$ $5.98$ $57.05$ $0.25$ $27.80$ $9.30$ $100$ $2130$ $54$ $566$ $133$ $220$ $45.5$ rim1 $996$ $4.43$ $53.19$ $0.17$ $29.95$ $12.02$ $100$ $3762$ $102$ $414$ $344$ $85$ $59.4$ rim2 $1039$ $5.75$ $0.22$ $28.31$ $10.49$ $100$ $3723$ $174$ $642$ $308$ $177$ $51.3$ rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $3771$ $66$ $727$ $175$ $177$ $47.0$ rim2 $1038$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ $100$ $3078$ $132$ $87$ $163$ $106$ $65.5$ rim2 $1075$ $2.98$ $50.16$ $0.08$ $32.42$ $14.57$ $100$ <td>manue</td> <td>00<del>4</del><br/>814</td> <td>5.02<br/>5.27</td> <td>55 16</td> <td>0.23</td> <td>21.0J<br/>28.76</td> <td>9.39<br/>10.49</td> <td>100</td> <td>2003</td> <td>60</td> <td>515<br/>650</td> <td>109</td> <td>1/0</td> <td>47.0<br/>51.7</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | manue       | 00 <del>4</del><br>814 | 5.02<br>5.27      | 55 16            | 0.23         | 21.0J<br>28.76                 | 9.39<br>10.49 | 100       | 2003         | 60       | 515<br>650     | 109        | 1/0        | 47.0<br>51.7  |
| matter $62.5$ $4.16$ $52.71$ $0.15$ $50.72$ $12.52$ $100$ $2357$ $76$ $524$ $135$ $100$ $01.9$ mantle $836$ $5.03$ $55.12$ $0.21$ $28.70$ $10.63$ $100$ $2394$ $108$ $549$ $181$ $177$ $53.2$ mantle $846$ $5.70$ $56.91$ $0.24$ $27.93$ $9.67$ $100$ $2091$ $66$ $482$ $133$ $170$ $47.7$ mantle $932$ $5.98$ $57.05$ $0.25$ $27.80$ $9.30$ $100$ $2130$ $54$ $566$ $133$ $220$ $45.5$ rim1 $996$ $4.43$ $53.19$ $0.17$ $29.95$ $12.02$ $100$ $3762$ $102$ $414$ $344$ $85$ $59.4$ rim1 $1018$ $5.35$ $55.75$ $0.22$ $28.31$ $10.49$ $100$ $3723$ $174$ $642$ $308$ $177$ $51.3$ rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $3773$ $174$ $642$ $308$ $177$ $51.3$ rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $3078$ $132$ $887$ $163$ $106$ $65.5$ rim2 $1075$ $2.98$ $50.16$ $0.08$ $32.42$ $14.57$ $100$ $2892$ $96$ $490$ $127$ $99$ $72.6$ rim2 $1093$ $5.08$ $54.64$ $0.20$ $28.97$ $11.00$ <td>mantle</td> <td>01<del>4</del><br/>825</td> <td>J.27<br/>A 19</td> <td>52.40<br/>52.71</td> <td>0.21</td> <td>20.70</td> <td>10.40</td> <td>100</td> <td>2003<br/>2557</td> <td>78</td> <td>574</td> <td>113</td> <td>234<br/>106</td> <td>51./<br/>61.0</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | mantle      | 01 <del>4</del><br>825 | J.27<br>A 19      | 52.40<br>52.71   | 0.21         | 20.70                          | 10.40         | 100       | 2003<br>2557 | 78       | 574            | 113        | 234<br>106 | 51./<br>61.0  |
| mantle $656$ $5.05$ $5.02$ $6.21$ $26.70$ $10.05$ $100$ $2374$ $106$ $547$ $161$ $177$ $53.2$ mantle $846$ $5.70$ $56.91$ $0.24$ $27.93$ $9.67$ $100$ $2091$ $66$ $482$ $133$ $170$ $47.7$ mantle $932$ $5.98$ $57.05$ $0.25$ $27.80$ $9.30$ $100$ $2130$ $54$ $566$ $133$ $220$ $45.5$ rim1 $996$ $4.43$ $53.19$ $0.17$ $29.95$ $12.02$ $100$ $3762$ $102$ $414$ $344$ $85$ $59.4$ rim1 $1018$ $5.35$ $55.75$ $0.22$ $28.31$ $10.49$ $100$ $3723$ $174$ $642$ $308$ $177$ $51.3$ rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $2371$ $66$ $727$ $175$ $177$ $47.0$ rim2 $1058$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ $100$ $3078$ $132$ $887$ $163$ $106$ $65.5$ rim2 $1075$ $2.98$ $50.16$ $0.08$ $32.42$ $14.57$ $100$ $2892$ $96$ $490$ $127$ $99$ $72.6$ rim2 $1093$ $5.08$ $54.64$ $0.20$ $28.97$ $11.00$ $100$ $3692$ $138$ $634$ $332$ $291$ $53.9$ M1, core $1125$ $2.58$ $49.10$ $0.05$ $32.83$ $15.28$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mantle      | 836                    | +.10<br>5 03      | 55 12            | 0.15         | 28 70                          | 12.52         | 100       | 2301         | 108      | 524<br>540     | 133        | 177        | 53.2          |
| mante $640$ $5.76$ $50.71$ $6.24$ $27.95$ $5.07$ $100$ $2091$ $60$ $482$ $135$ $170$ $47.7$ mante $932$ $5.98$ $57.05$ $0.25$ $27.80$ $9.30$ $100$ $2130$ $54$ $566$ $133$ $220$ $45.5$ rim1 $996$ $4.43$ $53.19$ $0.17$ $29.95$ $12.02$ $100$ $3762$ $102$ $414$ $344$ $85$ $59.4$ rim1 $1018$ $5.35$ $55.75$ $0.22$ $28.31$ $10.49$ $100$ $3723$ $174$ $642$ $308$ $177$ $51.3$ rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $2371$ $66$ $727$ $175$ $177$ $47.0$ rim2 $1058$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ $100$ $3078$ $132$ $887$ $163$ $106$ $65.5$ rim2 $1075$ $2.98$ $50.16$ $0.08$ $32.42$ $14.57$ $100$ $2892$ $96$ $490$ $127$ $99$ $72.6$ rim2 $1093$ $5.08$ $54.64$ $0.20$ $28.97$ $11.00$ $100$ $3692$ $138$ $634$ $332$ $291$ $53.9$ M1, core $1125$ $2.58$ $49.10$ $0.05$ $32.83$ $15.28$ $100$ $4470$ $186$ $574$ $513$ $n.d.$ $76.4$ M1, rim $1157$ $5.05$ $54.89$ $0.16$ $28.94$ $11.07$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | mantle      | 846                    | 5.05              | 55.12<br>56.01   | 0.21<br>0.24 | 20.70                          | 9.67          | 100       | 2394<br>2001 | 66       | <u></u><br>⊿82 | 133        | 170        | 33.2<br>Д7 7  |
| matrix $522$ $5.65$ $57.65$ $52.56$ $27.665$ $5.56$ $100$ $2150$ $54$ $506$ $153$ $220$ $43.5$ rim1 $996$ $4.43$ $53.19$ $0.17$ $29.95$ $12.02$ $100$ $3762$ $102$ $414$ $344$ $85$ $59.4$ rim1 $1018$ $5.35$ $55.75$ $0.22$ $28.31$ $10.49$ $100$ $3723$ $174$ $642$ $308$ $177$ $51.3$ rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $2371$ $66$ $727$ $175$ $177$ $47.0$ rim2 $1058$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ $100$ $3078$ $132$ $887$ $163$ $106$ $65.5$ rim2 $1075$ $2.98$ $50.16$ $0.08$ $32.42$ $14.57$ $100$ $2892$ $96$ $490$ $127$ $99$ $72.6$ rim2 $1093$ $5.08$ $54.64$ $0.20$ $28.97$ $11.00$ $100$ $3692$ $138$ $634$ $332$ $291$ $53.9$ M1, core $1125$ $2.58$ $49.10$ $0.05$ $32.83$ $15.28$ $100$ $4470$ $186$ $574$ $513$ $n.d.$ $76.4$ M1, rim $1157$ $5.05$ $54.89$ $0.16$ $28.94$ $11.07$ $100$ $3817$ $192$ $701$ $362$ $213$ $54.3$ M2, core $1179$ $4.29$ $53.55$ $0.15$ $29.92$ <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | mantle      | 932                    | 5.08              | 57.05            | 0.24         | 27.95                          | 9.07          | 100       | 2091         | 54       | -102<br>566    | 133        | 220        | т<br>45 5     |
| rim1 $1018$ $5.35$ $55.75$ $0.22$ $28.31$ $10.49$ $100$ $3702$ $102$ $414$ $344$ $63$ $59.4$ $rim2$ $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $3723$ $174$ $642$ $308$ $177$ $51.3$ $rim2$ $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $2371$ $66$ $727$ $175$ $177$ $47.0$ $rim2$ $1058$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ $100$ $3078$ $132$ $887$ $163$ $106$ $65.5$ $rim2$ $1075$ $2.98$ $50.16$ $0.08$ $32.42$ $14.57$ $100$ $2892$ $96$ $490$ $127$ $99$ $72.6$ $rim2$ $1093$ $5.08$ $54.64$ $0.20$ $28.97$ $11.00$ $100$ $3692$ $138$ $634$ $332$ $291$ $53.9$ $M1$ , core $1125$ $2.58$ $49.10$ $0.05$ $32.83$ $15.28$ $100$ $4470$ $186$ $574$ $513$ $n.d.$ $76.4$ $M1$ , rim $1157$ $5.05$ $54.89$ $0.16$ $28.94$ $11.07$ $100$ $3817$ $192$ $701$ $362$ $213$ $54.3$ $M2$ , core $1179$ $4.29$ $53.55$ $0.15$ $29.92$ $12.12$ $100$ $4050$ $174$ $718$ $380$ $121$ $60.4$ $M2$ , rim $1200$ $5.18$ $0.20$ $28.69$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | riml        | 996                    | J. JO<br>4 43     | 53 10            | 0.25         | 27.00                          | 12.00         | 100       | 2150         | 102      | <u>41</u> 1    | 341        | 85         | -19.9<br>50 / |
| rim2 $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $2371$ $66$ $727$ $177$ $31.5$ $rim2$ $1039$ $5.75$ $56.80$ $0.25$ $27.86$ $9.49$ $100$ $2371$ $66$ $727$ $175$ $177$ $47.0$ $rim2$ $1058$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ $100$ $3078$ $132$ $887$ $163$ $106$ $65.5$ $rim2$ $1075$ $2.98$ $50.16$ $0.08$ $32.42$ $14.57$ $100$ $2892$ $96$ $490$ $127$ $99$ $72.6$ $rim2$ $1093$ $5.08$ $54.64$ $0.20$ $28.97$ $11.00$ $100$ $3692$ $138$ $634$ $332$ $291$ $53.9$ $M1$ , core $1125$ $2.58$ $49.10$ $0.05$ $32.83$ $15.28$ $100$ $4470$ $186$ $574$ $513$ $n.d.$ $76.4$ $M1$ , rim $1157$ $5.05$ $54.89$ $0.16$ $28.94$ $11.07$ $100$ $3817$ $192$ $701$ $362$ $213$ $54.3$ $M2$ , core $1179$ $4.29$ $53.55$ $0.15$ $29.92$ $12.12$ $100$ $4050$ $174$ $718$ $380$ $121$ $60.4$ $M2$ , rim $1200$ $5.10$ $55.18$ $0.20$ $28.69$ $10.75$ $100$ $3716$ $162$ $684$ $302$ $206$ $53.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | rim1        | 1018                   | 5 35              | 55.19            | 0.22         | 29.95                          | 10.49         | 100       | 3702         | 174      | 642            | 308        | 177        | 51.3          |
| rim2 $1058$ $3.76$ $51.72$ $0.13$ $30.87$ $13.22$ $100$ $2071$ $60$ $127$ $175$ $177$ $47.0$ rim2 $1075$ $2.98$ $50.16$ $0.08$ $32.42$ $14.57$ $100$ $3078$ $132$ $887$ $163$ $106$ $65.5$ rim2 $1093$ $5.08$ $54.64$ $0.20$ $28.97$ $11.00$ $100$ $3692$ $138$ $634$ $332$ $291$ $53.9$ M1, core $1125$ $2.58$ $49.10$ $0.05$ $32.83$ $15.28$ $100$ $4470$ $186$ $574$ $513$ $n.d.$ $76.4$ M1, rim $1157$ $5.05$ $54.89$ $0.16$ $28.94$ $11.07$ $100$ $3817$ $192$ $701$ $362$ $213$ $54.3$ M2, core $1179$ $4.29$ $53.55$ $0.15$ $29.92$ $12.12$ $100$ $4050$ $174$ $718$ $380$ $121$ $60.4$ M2, rim $1200$ $5.10$ $55.18$ $0.20$ $28.69$ $10.75$ $100$ $3716$ $162$ $684$ $302$ $206$ $53.2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | rim2        | 1039                   | 5.55              | 56.80            | 0.22         | 20.51                          | 949           | 100       | 2371         | 66       | 727            | 175        | 177        | 47.0          |
| rim2       1075       2.98       50.16       0.08       32.42       14.57       100       2892       96       490       127       99       72.6         rim2       1093       5.08       54.64       0.20       28.97       11.00       100       3692       138       634       332       291       53.9         M1, core       1125       2.58       49.10       0.05       32.83       15.28       100       4470       186       574       513       n.d.       76.4         M1, rim       1157       5.05       54.89       0.16       28.94       11.07       100       3817       192       701       362       213       54.3         M2, core       1179       4.29       53.55       0.15       29.92       12.12       100       4050       174       718       380       121       60.4         M2, rim       1200       5.10       55.18       0.20       28.69       10.75       100       3716       162       684       302       206       53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | rim2        | 1058                   | 3.76              | 51 72            | 0.13         | 30.87                          | 13.22         | 100       | 3078         | 132      | 887            | 163        | 106        | 65.5          |
| rim2       1093       5.08       54.64       0.20       28.97       11.00       100       3692       138       634       332       291       53.9         M1, core       1125       2.58       49.10       0.05       32.83       15.28       100       4470       186       574       513       n.d.       76.4         M1, rim       1157       5.05       54.89       0.16       28.94       11.07       100       3817       192       701       362       213       54.3         M2, core       1179       4.29       53.55       0.15       29.92       12.12       100       4050       174       718       380       121       60.4         M2, rim       1200       5.10       55.18       0.20       28.69       10.75       100       3716       162       684       302       206       53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | rim2        | 1075                   | 2.98              | 50.16            | 0.08         | 32 42                          | 14 57         | 100       | 2892         | 96       | 490            | 105        | 99         | 72.6          |
| Mile       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100       100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | rim2        | 1093                   | 5.08              | 54 64            | 0.00         | 28.97                          | 11.00         | 100       | 3692         | 138      | 634            | 332        | 291        | 53.9          |
| M1, rim       1157       5.05       54.89       0.16       28.94       11.07       100       3817       192       701       362       213       54.3         M2, core       1179       4.29       53.55       0.15       29.92       12.12       100       4050       174       718       380       121       60.4         M2, rim       1200       5.10       55.18       0.20       28.69       10.75       100       3716       162       684       302       206       53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M1_core     | 1125                   | 2.58              | 49 10            | 0.05         | 32.83                          | 15 28         | 100       | 4470         | 186      | 574            | 513        | nd         | 76.4          |
| M2, core 1179 4.29 53.55 0.15 29.92 12.12 100 4050 174 718 380 121 60.4<br>M2, rim 1200 5.10 55.18 0.20 28.69 10.75 100 3716 162 684 302 206 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M1 rim      | 1157                   | 5.05              | 54 89            | 0.05         | 28.94                          | 11.07         | 100       | 3817         | 192      | 701            | 362        | 213        | 54 3          |
| M2, rim 1200 5.10 55.18 0.20 28.69 10.75 100 3716 162 684 302 206 53.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M2. core    | 1179                   | 4.29              | 53.55            | 0.15         | 29.92                          | 12.12         | 100       | 4050         | 174      | 718            | 380        | 121        | 60.4          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | M2, rim     | 1200                   | 5.10              | 55.18            | 0.20         | 28.69                          | 10.75         | 100       | 3716         | 162      | 684            | 302        | 206        | 53.2          |

CHURIKOVA ET AL. 315

Table 2. (continued)

| 14610 21 (001  | ninaca)             |                   |                  |                  |           |            |           |          |      |     |     |     |      |
|----------------|---------------------|-------------------|------------------|------------------|-----------|------------|-----------|----------|------|-----|-----|-----|------|
| Description    | S <sup>a</sup> , μm | Na <sub>2</sub> O | SiO <sub>2</sub> | K <sub>2</sub> O | $Al_2O_3$ | CaO        | Total     | Fe       | Ti   | Sr  | Mg  | Ba  | An   |
| Pl 3 from end  | clave KIZ           | -07/1 (Fig        | . 5b)            |                  |           |            |           |          |      |     |     |     |      |
| core           | 22                  | 5.27              | 55.34            | 0.21             | 28.53     | 10.49      | 100       | 2013     | 114  | 541 | 133 | 170 | 51.7 |
| core           | 111                 | 6.07              | 57.02            | 0.29             | 27.17     | 9.07       | 100       | 1897     | n.d. | 659 | 109 | 248 | 44.5 |
| core           | 211                 | 5.91              | 56.45            | 0.23             | 27.60     | 9.60       | 100       | 1866     | n.d. | 431 | 103 | 234 | 46.7 |
| core           | 256                 | 5.57              | 55.06            | 0.23             | 28.28     | 10.09      | 99        | 2060     | 60   | 600 | 96  | 206 | 49.3 |
| core           | 300                 | 5.85              | 56.58            | 0.27             | 27.32     | 9.35       | 99        | 1974     | 66   | 659 | 103 | 227 | 46.2 |
| core           | 378                 | 5.24              | 54.85            | 0.20             | 28.50     | 10.60      | 99        | 2021     | 54   | 608 | 115 | 206 | 52.2 |
| core           | 411                 | 5.95              | 56.90            | 0.25             | 27.25     | 9.06       | 99        | 1936     | 48   | 591 | 103 | 241 | 45.0 |
| mantle         | 467                 | 3.88              | 51.64            | 0.12             | 30.78     | 12.83      | 99        | 2200     | 102  | 667 | 90  | 85  | 64.1 |
| mantle         | 522                 | 4.58              | 53.18            | 0.16             | 29.79     | 11.68      | 99        | 2114     | 60   | 566 | 115 | 99  | 58.0 |
| mantle         | 556                 | 5.00              | 54.55            | 0.18             | 29.04     | 10.78      | 100       | 1982     | 78   | 651 | 115 | 248 | 53.8 |
| mantle         | 589                 | 3.61              | 50.99            | 0.12             | 31.20     | 13.27      | 99        | 2332     | 66   | 819 | 121 | 142 | 66.6 |
| mantle         | 611                 | 3.96              | 51.57            | 0.14             | 30.85     | 12.82      | 99        | 2223     | 54   | 600 | 139 | 149 | 63.6 |
| mantle         | 700                 | 6.28              | 57.46            | 0.29             | 26.69     | 8.59       | 99        | 1904     | 78   | 363 | 121 | 234 | 42.4 |
| mantle         | 733                 | 4.95              | 54.60            | 0.20             | 28.92     | 10.91      | 100       | 2107     | 60   | 752 | 109 | 248 | 54.3 |
| mantle         | 800                 | 6.00              | 56.85            | 0.27             | 27.32     | 9.10       | 100       | 1912     | 54   | 524 | 115 | 206 | 44.9 |
| mantle         | 900                 | 6.10              | 57.05            | 0.26             | 27.43     | 9.05       | 100       | 1904     | 60   | 718 | 96  | 227 | 44.4 |
| mantle         | 1011                | 5.74              | 56.43            | 0.27             | 27.52     | 9.41       | 99        | 1866     | 54   | 718 | 109 | 206 | 46.8 |
| mantle         | 1044                | 6.24              | 57.10            | 0.27             | 27.05     | 8.94       | 100       | 1858     | 60   | 498 | 115 | 227 | 43.5 |
| mantle         | 1133                | 6.04              | 57.25            | 0.29             | 26.95     | 8.67       | 99        | 2005     | 54   | 659 | 90  | 305 | 43.4 |
| mantle         | 1167                | 3.94              | 51.42            | 0.13             | 30.88     | 13.07      | 99        | 2379     | 108  | 659 | 121 | 135 | 64.2 |
| mantle         | 1222                | 5.66              | 56.59            | 0.25             | 27.73     | 9.46       | 100       | 2060     | 60   | 482 | 127 | 270 | 47.3 |
| mantle         | 1267                | 5.55              | 55.72            | 0.23             | 28.08     | 9.94       | 100       | 2262     | 60   | 718 | 103 | 241 | 49.1 |
| R <sup>f</sup> | 1333                | 3.20              | 51.52            | 0.24             | 30.75     | 13.35      | 99        | 4843     | 246  | 617 | 416 | 135 | 68.7 |
| R              | 1367                | 3.27              | 50.43            | 0.07             | 31.81     | 14.14      | 100       | 3957     | 156  | 507 | 458 | 85  | 70.2 |
| rim1           | 1422                | 4.69              | 53.63            | 0.13             | 29.81     | 11.56      | 100       | 3327     | 180  | 507 | 295 | 57  | 57.2 |
| rim1           | 1467                | 5.62              | 55.69            | 0.16             | 28.04     | 9.87       | 99        | 2930     | 102  | 473 | 235 | 213 | 48.8 |
| rim2           | 1511                | 3.35              | 50.36            | 0.09             | 31.68     | 13.98      | 99        | 3941     | 132  | 566 | 464 | 85  | 69.4 |
| rim2           | 1541                | 4.02              | 52.29            | 0.09             | 30.44     | 12.69      | 100       | 3653     | 204  | 710 | 380 | 149 | 63.2 |
| rim2           | 1570                | 4.94              | 54.44            | 0.13             | 29.13     | 11.02      | 100       | 3148     | 162  | 710 | 283 | 106 | 54.8 |
| rim2           | 1600                | 5.60              | 56.68            | 0.17             | 28.07     | 9.74       | 100       | 3039     | 132  | 667 | 235 | 156 | 48.5 |
| M, core        | 1622                | 3.39              | 50.62            | 0.08             | 31.41     | 14.10      | 100       | 4198     | 180  | 710 | 513 | 92  | 69.4 |
| M, rim         | 1656                | 5.50              | 55.24            | 0.16             | 28.78     | 10.55      | 100       | 2604     | 162  | 743 | 235 | 78  | 51.0 |
|                |                     |                   |                  | Pl               | 3 from da | citic lava | KIZ-07 (1 | Fig. 6b) |      |     |     |     |      |
| core           | 0                   | 5.92              | 56.94            | 0.26             | 27.90     | 9.63       | 101       | 1850     | n.d. | 600 | 103 | 199 | 46.6 |
| mantle         | 91                  | 5.52              | 56.05            | 0.23             | 28.37     | 10.16      | 100       | 1842     | 78   | 625 | 121 | 163 | 49.8 |
| mantle         | 121                 | 6.12              | 57.89            | 0.30             | 27.08     | 8.79       | 100       | 1850     | 60   | 608 | 103 | 234 | 43.4 |
| mantle         | 145                 | 5.85              | 56.61            | 0.25             | 28.05     | 9.74       | 100       | 1858     | 72   | 659 | 109 | 234 | 47.2 |
| mantle         | 170                 | 6.43              | 58.55            | 0.32             | 26.67     | 8.48       | 100       | 1827     | 60   | 769 | 103 | 270 | 41.4 |
| mantle         | 188                 | 5.94              | 57.81            | 0.28             | 27.55     | 9.01       | 101       | 1873     | n.d. | 456 | 103 | 305 | 44.9 |
| mantle         | 212                 | 5.77              | 56.40            | 0.22             | 28.25     | 9.96       | 101       | 2037     | n.d. | 634 | 115 | 291 | 48.2 |
| mantle         | 224                 | 5.72              | 56.33            | 0.22             | 28.28     | 9.90       | 100       | 2013     | n.d. | 676 | 115 | 263 | 48.3 |
| mantle         | 236                 | 5.98              | 57.20            | 0.25             | 27.69     | 9.26       | 100       | 1873     | 102  | 803 | 96  | 305 | 45.4 |
| mantle         | 255                 | 5.47              | 56.68            | 0.24             | 28.02     | 9.69       | 100       | 1967     | 90   | 684 | 90  | 206 | 48.7 |
| mantle         | 321                 | 6.15              | 57.94            | 0.28             | 27.21     | 8.76       | 100       | 2044     | 60   | 524 | 96  | 312 | 43.3 |
| mantle         | 358                 | 5.46              | 55.60            | 0.22             | 28.50     | 10.27      | 100       | 2107     | 72   | 574 | 115 | 263 | 50.3 |
| mantle         | 400                 | 6.09              | 57.59            | 0.29             | 27.23     | 8.99       | 100       | 1881     | 60   | 583 | 103 | 213 | 44.1 |
| mantle         | 467                 | 4.93              | 54.68            | 0.18             | 29.47     | 11.20      | 100       | 2278     | 72   | 659 | 133 | 234 | 55.1 |
| mantle         | 491                 | 5.75              | 56.68            | 0.23             | 28.02     | 9.86       | 101       | 2231     | 78   | 541 | 109 | 213 | 48.0 |
| mantle         | 521                 | 5.95              | 56.89            | 0.25             | 27.76     | 9.62       | 100       | 2122     | 108  | 625 | 109 | 255 | 46.5 |
| mantle         | 576                 | 5.89              | 56.92            | 0.27             | 27.79     | 9.60       | 100       | 2044     | 96   | 583 | 127 | 206 | 46.7 |
| R              | 679                 | 2.80              | 49.65            | 0.15             | 31.79     | 14.31      | 99        | 4998     | 216  | 507 | 470 | 64  | 73.1 |
| rim            | 721                 | 2.52              | 48.81            | 0.06             | 32.71     | 15.41      | 100       | 4578     | 186  | 583 | 549 | 64  | 76.9 |
| rim            | 727                 | 2.58              | 48.99            | 0.07             | 32.74     | 15.41      | 100       | 4485     | 132  | 591 | 494 | 71  | 76.5 |
| rim            | 733                 | 3.52              | 51.08            | 0.09             | 30.97     | 13.61      | 99        | 4415     | 162  | 507 | 458 | 50  | 67.7 |
| rim            | 745                 | 4.51              | 53.00            | 0.14             | 29.88     | 12.19      | 100       | 4205     | 192  | 507 | 350 | 128 | 59.4 |
| rim            | 752                 | 3.84              | 52.03            | 0.11             | 30.68     | 13.15      | 100       | 4034     | 162  | 515 | 398 | 43  | 65.0 |
| rim            | 758                 | 5.06              | 55.16            | 0.19             | 28.57     | 10.88      | 100       | 3879     | 186  | 566 | 344 | 149 | 53.7 |
|                |                     |                   |                  |                  |           |            |           |          |      |     |     |     |      |

| Table 2  | (aantinuad) | ١ |
|----------|-------------|---|
| Table 2. | continued   | J |

| Description | S <sup>a</sup> , μm | Na <sub>2</sub> O | SiO <sub>2</sub> | K <sub>2</sub> O | Al <sub>2</sub> O <sub>3</sub> | CaO   | Total | Fe   | Ti  | Sr  | Mg  | Ba  | An   |
|-------------|---------------------|-------------------|------------------|------------------|--------------------------------|-------|-------|------|-----|-----|-----|-----|------|
| rim         | 764                 | 5.05              | 55.03            | 0.18             | 28.64                          | 10.91 | 100   | 4485 | 216 | 574 | 308 | 156 | 53.8 |
| M, core     | 818                 | 3.08              | 49.91            | 0.08             | 31.84                          | 14.35 | 99    | 4749 | 180 | 490 | 537 | 43  | 71.7 |
| M, rim      | 848                 | 3.88              | 52.01            | 0.13             | 30.41                          | 12.80 | 99    | 5200 | 306 | 566 | 555 | 99  | 64.1 |

<sup>a</sup> S - distance from the phenocryst core in microns.

<sup>b</sup> Major elements (Na<sub>2</sub>O, SiO<sub>2</sub>, K<sub>2</sub>O, Al<sub>2</sub>O<sub>3</sub> and CaO) are given in wt. %, minor and trace elements (Fe, Ti, Sr, Mg and Ba) - in ppm. <sup>c</sup>n d - not detected

<sup>d</sup>M - microlite. One or two plagioclase microlites were analysed near by each plagioclase phenocrysts – M1 and M2, respectively.

<sup>e</sup> Outer rims in some grains were measured at different edges of crystal - rim1 and rim2, respectively.

<sup>f</sup>R – resorption zone.

#### 5. DISCUSSION

Kizimen rocks reveal many features commonly attributed to magma mixing: a) presence of olivine and orthopyroxene of constant composition ( $Fo_{79-72}$  and  $En_{63-65}Wo_{1-2}$ , respectively) in all rocks, independent of melt composition; b) coexistence of olivine and quartz; and c) coexistence of plagioclases with high-An core and low-An rims and with low-An cores at high-An rims. Mixing between silicic and mafic end-members is consistent with the observed linear trends on all two-component diagrams for this volcano (e.g. Figure 3). The abundance and size of enclaves in many lava flows as well as numerous banded lavas suggest that the mixing processes play an unusually profound role in magma genesis at Kizimen volcano.

If all Kizimen rocks from dacitic host lavas to mafic enclaves are indeed hybrids, the temporal trend for mafic enclaves on the  $SiO_2$ -K<sub>2</sub>O diagram either suggests that magma chamber recharge is getting more mafic or that the proportion of the mafic end-member increases with time (Figure 3).

From Sr and Nd isotope data, which are very similar in all rocks and close to MORB values, there is not evidence for any crustal contamination.

Trace element patterns of variably differentiated magmas, which crystallized from the same parent should have sub-parallel patterns, where more evolved rocks are more enriched in all incompatible elements. This is valid however, only as long as olivine, clino- and orthopyroxene, plagioclase, and spinel (or magnetite) are the only crystallizing phases. This is because all of them have low partition coefficients for incompatible trace elements. Theoretically, the observed cross-over patterns could be explained as a result of magmas coming from different mantle sources. However, cross-over patterns on spider diagrams for the rocks of Bakening volcano were modeled by Dorendorf et. al. [2000b] as depletion of the dacitic magma in HREE by extensive hornblende fractionation from basaltic melt. We suggest that basalts and dacites of Kizimen volcano were also affected by a strong amphibole signature and thus originated from similar mantle melts. This is reasonable, because all lavas at Kizimen, including the mafic varieties, are rich in amphibole.

According to petrographical and geochemical data (Fo<sub>72-78</sub> olivine, Mg# 41 to 50 of whole rocks, abundance of low-An plagioclase, and low Cr and Ni concentrations in whole rocks), mafic enclaves are already fractionated compared to primary mantle melts and are contaminated by incorporation of more evolved material, which may or may not be derived directly from the host. Similarly, the presence of high-An plagioclase and traces of olivine in Kizimen dacites suggest that the host lavas are contaminated by mafic debris from enclaves. Thus, both host and enclaves are hybrids formed by mixing of more extreme end-members.

Over the last decade it was shown that trace elements in zoned minerals are a useful tool to identify mixing end-members [e.g. Brophy at al., 1996; Davidson and Tepley, 1997; Ginibre at al., 2002a, 2002b]. Our discussion of mixing end-members and mixing events is based on trace element variations in plagioclase. The Mg and Fe content in plagioclase phenocrysts shows two trends when plotted against An (Figure 7). Cores of Pl-1 phenocrysts from mafic enclaves are highest in An (An<sub>75</sub>-An<sub>94</sub>), Mg (300-550 ppm) and Fe (2900–4600 ppm) compared to all other crystals. These high-An, high-Mg, and high-Fe plagioclases probably have grown in a relatively mafic source. Rare crystals of "mafic" plagioclases reveal some resorption in the core (Figure 5a), but the mantle zone and outer rim are never resorbed. This observation suggests that Pl-1 mainly crystallized from a relatively high-temperature melt and was not dissolved during the later mixing events before eruptions. Experimental values of  $Kd_{Mg}$  in plagioclase vary between 0.025 and 0.05 [e.g. Bindeman et al. 1998]. Using Kd<sub>Mg</sub> of 0.035, the calculated MgO concentration in the most mafic melt is  $3.17\pm0.5$ wt%, which is of the same order as MgO concentration in whole rock composition of mafic enclaves (Table 1, samples KIZ-01/1; KIZ-07/1; KIZ-24/1). High-An plagioclases were found in all enclaves but only traces of Pl-1 were found in host lavas. Therefore, these feldspars are considered phenocrysts from a magma close to the mafic end-member.



**Figure 7.** Mg (a) and Fe (b) variations with An-content in Kizimen plagioclase: squares – cores, circles – middle zones, diamonds – rims, triangles - microlites; (c) schematic evolution of the crystals. Arrows show direction of evolutionary trends from core to rim. See text for further explanation and discussion of the trends.

In contrast, the cores of Pl-2 from the host dacitic lava are lowest in An  $(An_{40}-An_{50})$ , Mg (50–100 ppm), and Fe (1500–2000 ppm). These low-An plagioclases probably formed in the evolved end-member, but are now found in both, the mafic enclave and the host dacite.

The sodic and low-Mg (and low-Fe) cores of the plagioclases Pl-3 from both mafic enclaves and host lavas are similar to Pl-2 from the host lavas (Figures 5b, 6, 7). Similarity of compositions of Pl-2 and Pl-3 suggests that all these crystals formed in the same relatively evolved melt.

Mantle zones and rims of plagioclases from enclave and lava show different histories. Pl-1 from enclaves displays a typical fractionation trend (Trend I in Figure 7c) with decreasing An and Mg content from core to rim. Mantles zones and rims from PI-2 of the host lavas show two different trends. One falls on the differentiation trend I (correlated, outward decreasing An, Mg, and Fe). The second trend II, which is also represented in mantles and rims of sodic plagioclase (PI-2 and all grains PI-3) is characterized by increasing in An from core to rim at nearly constant Mg content and slightly increasing Fe content. Apparently, these two separate trends could be explained by two different processes. Trend I likely represents a differentiation trend overprinted by repeated mixing events between different members of the differentiation series. This is consistent with the reversals in An between core and rim (Figure 7c). Dissolution features near the rims of sodic plagioclases are then explained by mixing between more extreme melt compositions: lowtemperature dacitic magma and high-temperature basaltic melt. This is consistent with the observation that this lategrown An-rich plagioclase rim is also characterized by high concentrations of Mg and low of Ba and Sr contents (for example, point 18, Figure 6b). Microlites then grew from the hybrid melt with compositions similar to the rims of these phenocrysts.

Crystals which grew from the basaltic high-temperature melt in mafic enclaves (Pl-1, Figure 5a) before incorporation of enclaves in the host dacite did not subsequently dissolve significantly. The abrupt change in chemical composition at their late-grown rims relative to their inner zones (decreasing An, Mg and Fe and increasing Ba and Sr, Figure 5a) also suggests a magma mixing processes just before or during eruption. The fact that these crystals are rather homogeneous in their cores with respect to An and minor and trace elements (Figure 5a) argues that they record a quiet growth environment in the mafic end-member magma before mixing.

Cores of the most sodic low-An plagioclases fall on the continuation of trend I (Figure 7) and are probably the result of mixing late in the differentiation process.

Trend II is more difficult to explain. It is characterized by repetitive cycles of increasing and decreasing An content, however, without correlated changes in Mg (or with slight increase in Fe) content. This observation excludes simple mixing of variably differentiated magmas to explain resorption and An variations (Figure 7b). It was shown that  $\mathrm{Kd}_{\mathrm{Mg}}$  in plagioclase varies within a very narrow range, and correlates weakly with T [Longhi et al., 1976] and An content [Bindeman et al. 1998]. In the presence of hornblende and Opx crystallization and decreasing Mg (and Fe) in the melt, the effect of variable An on Mg (and Fe) partitioning is inconsistent with the observed constant Mg concentrations [see Ginibre et al., 2002b for a more detailed discussion of the An-dependent trace element partitioning in plagioclase]. This trend could then be caused by either increasing temperature and/or increasing water content in the melt. Low An content and concentrations of magnesium (and Fe) in these plagioclases indicate that the melt was certainly not more mafic. At increased temperature, the sodic plagioclase would dissolve in hotter melt and the new more An-rich plagioclase starts to grow. Consequently, variable An at constant Mg could reflect a thermal rather than a compositional disturbance of the host melt. An increase in temperature aided by incomplete mixing when heat from a high-temperature basaltic/basaltic-andesite magma is transported into the low-temperature host dacite by thermal conduction could occur without effect on trace elements in the melt and in crystallized plagioclase.

Alternatively, variable An at constant Mg may be expected when the water content in the melt increases. In this case, a single plagioclase phenocryst may have moved into (and out of) a water-rich boundary layer of the magma chamber [*Ginibre et al.*, 2002a]. However such repeated movements of phenocrysts are less likely in the highly viscous dacite melt and therefore we favor the first scenario of "thermal" mixing.

Finally, an unusual behavior of Mg vs. An (less so for Fe) was found in Pl-1 grains from mafic enclaves: increasing Mg at decreasing An from cores to mantle (Trend III in Figure 7). Such Mg (and Fe) behavior was only observed in the highest-An zones of the crystals ( $An_{75-95}$ ). Because trend for Mg are more pronounced compare to Fe (Figures 7a and 7b), our future discussion would be based on Mg content in plagioclases. Several scenarios are considered to explain this trend:

(1) The continuous replenishment of the magma chamber by a high-Mg melt. The existence of sieved textures in the core of some Pl-1 (Figure 5a) could suggest magma mixing events in the early stages of the plagioclase crystallization. However, negative correlations between An and Mg (and Fe) in plagioclase Pl-1 is observed along the core and mantle zone of the crystal. Also, continuous recharge would be expected to result in resorption and subsequent regrowth, which is not observed in Pl-1 mantle. On the basis of these arguments, we rule out an origin from highly mafic magmas.

(2) Considering the linear relation between An and Mg partitioning in plagioclase [*Bindeman et al.*, 1998], the zoning could indicate an early phase of crystallization where plagioclase was the only phase. As a result, prior to the onset of olivine and pyroxene fractionation, the An content could decrease while Mg (and Fe) increases. This explanation was tested by a fractional crystallization model of a melt similar in composition to the most mafic end-member enclave (represented by a high-Al basalt KIZ-01/1, Table 1) based on the COMAGMAT program at 1% of H<sub>2</sub>O and NNO buffer. The pressure in the model (125 MPa) was taken from petrological experiments [*Churikova et al.*, 2001b; *B. Browne*, personal comm.], assuming that the magma chamber was not at a significantly different depth during melt evolution and later mixing.

As shown in Figure 8, the modeled compositions fall close to the observed magma compositions at Kizimen and are consistent with decreasing An in the plagioclase coupled with increasing Mg and Fe in the melt (Figure 8a, b, f) very early in the crystallization sequence. Thus, this model is consistent with Trend III. Observed olivine and pyroxene compositions are also reproduced well in the model: olivines and clinopyroxenes in mafic enclaves are  $Fo_{79.75}$  and  $En_{44}Fs_{16}Wo_{40}$  [see also *Trusov & Pletchov*, 2005], and modeled compositions are  $Fo_{78,5.76}$  and  $En_{43.46}Fs_{12.17}Wo_{40.42}$ , respectively.

However, the most calcic plagioclase calculated in the model is at  $An_{84-85}$ , whereas inner parts of Pl-1 in basalt and basaltic andesite enclaves show values up to  $An_{93}$ . We would argue that this deviation between modeled and observed plagioclase compositions could be a result of the parameters chosen for the model, which may not be completely appropriate but cannot be better constrained. According to our calculations, Trend III (i.e. increasing Mg and Fe with decreasing An) could therefore be controlled by melt composition and Pl-only fractionation in the first stages of high-Al melt evolution.

We do not imply, however, that this melt was a primary magma. Low MgO (4–5%), Ni (less than 2 ppm), Cr (11–20 ppm) and relatively high  $K_2O$  (0,9%) suggest that all enclaves represent already fractionated compositions. The existence of resorbed cores inside of some grains of Pl-1 and the presence of numerous fine-grained basaltic inclusions (enclaves within enclaves) inside the mafic enclaves (Figure 2b) also suggest that the enclave's magma was itself affected by magma mixing events. The crystallization P-T conditions where plagioclase would crystallize first at suppressed Ol and Cpx crystallization are very limited, and according to our model would be possible in subsurface conditions from 1 to 3 Kbar (about 10 km). We believe that such scenario



**Figure 8.** Model calculations (dotted line) of the fractional crystallization of basaltic magma from the Kizimen volcano (sample KIZ-96-01/1) in comparison with observed whole rock compositions (gray circles). Calculations were conducted using COMAGMAT program [*Ariskin et al.*, 1993] for P=125Mpa, NNO buffer and  $H_2O=1\%$ . Due to Pl fractionation during the first stage of crystallization the residual melt is enriched in MgO.

is possible at Kizimen volcano, but other alternatives are possible.

(3) An other explanation of the trend III is non-linear behavior of  $Kd_{Mg}$  in high-An plagioclases.

Sato [1989] noted that, due to kinetic disequilibrium, the distribution coefficients determined by the experiments may not represent the true equilibrium values and that as a result partitioning in experiments are significantly different from natural systems.

Experimentally determined  $Kd_{Mg}$  in plagioclase varies in a narrow range and is expected to be linear and almost independent from melt composition [e.g. *Bindeman et al.*, 1998]. In this case the positive correlation of An and Mg in plagioclases would be expected. In fact, positive correlation between An and Mg (and Fe) was observed for relatively sodic plagioclases from the Kizimen volcano (Figure 7c, Trend I). However, at An<sub>75-95</sub> we clearly observe the negative correlation between An and Mg in plagioclases (Figure 7c, Trend III). From our point of view, this may testify to nonlinear behavior of  $Kd_{Mg}$  (and  $Kd_{Fe}$ ) in high-An plagioclases. We have a reason to claim that such participation of Mg (and Fe) in high-An plagioclases could be found not only at the complex Kizimen volcano, but also in more primitive systems.

McNeill and Danyushevsky [1996] studied the melt inclusions in minerals from MORB basalts from the Costa Rica Rift (Borehole 896A) where Ol, Cpx and Sp were first crystallized phases. According to their data An in plagioclases and MgO and FeO in the equilibrium melts have a positive correlations (Figures 9a, b drawn using data from Tables 3, 7 of *McNeill and Danyushevsky*, 1996). However, we could observe the trends of negative correlations An with MgO and FeO in all Ca-rich (An<sub>83-95</sub>) plagioclases (Figure 9c, d, data from Table 3, *McNeill and Danyushevsky*, 1996).

We suggest that negative correlations between An and Mg (less to Fe) in high-An plagioclases at Kizimen could indeed be a function of non-linear behavior of  $Kd_{Mg}$ , for example, due to non-equilibrium processes in the Pl-melt system and not directly controlled by melt composition. To our knowledge, this effect has not been documented before and requires additional experimental work for an understanding of  $Kd_{Mg}$  and  $Kd_{Fe}$  in high-An plagioclases.

Figure 10 shows a schematic model of the magma system below Kizimen volcano, which summarizes our interpretations. Mafic magma (with high-An Pl-1) is introduced to the dacitic magma chamber (with sodic Pl-2) bringing the two magmas in direct contact. This process forms hybrids where two contrasting domains, the enclaves and host lava, show the effects of both chemical and physical mixing (Figure 2c). Pl-2 of bearing dacite, engulfed in mafic magma would be exposed to high temperature, resulting in plagioclase dissolution and transition of Pl-2 in Pl-3. The newly hybrid melt around this plagioclase would be more mafic, resulting in more calcic rims on the resorbed sodic mantle zones of



**Figure 9.** MgO and FeO in melt inclusions versus An component of host plagioclase (a, b) and MgO and FeO concentrations in plagioclase versus An component (c, d) from MORB basalts of the Costa Rica Rift (Borehole 896A; data from *McNeill and Danyushevsky*, 1996, Tables 3, 7).



**Figure 10.** Schematic cartoon illustrating different processes in magma chamber of the Kizimen volcano. Due to a recharge of the basaltic magma inside dacitic magma chamber interactions between two melts are complex. Melts and their crystals could be changed by direct physical and chemical mixing within the mixing zone forming hybrid magma and streaky lavas or by thermal conduction only. Mafic plagioclase grains from basalt would be not significantly influenced by these processes while acid plagioclases would dissolve at higher temperature conditions and overgrow by new rims from surrounding hybrid and/or overheated melts. The movement of the plagioclase crystals are shown by arrows. More discussion see in text.

Pl-3 (e.g. Pl-3 and trend I on Figure 7). Some Pl-3 is returned to the host dacite through mechanical dispersion of mixing products, while some remains as phenocrysts in enclaves.

Mafic Pl-1 from basalt that was entrained in the hybrid zone was not affected by the low-temperature dacite melt and

was not resorbed. However it will be overgrown by a more Ab-rich rim precipitated from the new hybrid melt. Such plagioclases are rare in host lava. But we did observe them in significant quantities in the enclaves, which are hybridized mafic magma.

The recharge and mixing process was not sufficiently effective so as to involve the entire magma volume and thus full homogenization in the magma chamber is not achieved. Some portions of dacitic magma may not have been directly involved in the chemical hybridization process, but were nevertheless subjected to heat from recharge. At increased temperatures, the rims of sodic Pl-2 recrystallized to more An-rich composition, forming trend II on Figure 7.

We speculate that episodic rise of basaltic recharge is particularly frequent (and thus causes a high proportion of mafic enclaves) in an extensional tectonic regime and is sustaining a dynamic and poorly mixed magma body at shallow depth below Kizimen. Interactions between magmas at Kizimen are complex, and apparently share many similarities with interactions at Unzen [*Eichelberger et al.*, 2006].

#### 6. CONCLUSIONS

Based on textural evidence from plagioclase growth zones and major, minor and trace element contents, we conclude that:

1) All rocks of Kizimen volcano, including mafic enclaves, are hybrids and represent mixture of mafic and acid endmembers in different proportions. These end-members are likely to be derived melts from the same parental melt by crystal fractionation including amphibole.

2) The unusual negative correlation of Mg with An in high-An plagioclase can be explained by fractional crystallization of the high-Al basalt with Pl-only fractionation or by nonlinear behavior of  $Kd_{Mg}$  in Pl-melt system.

3) Incomplete mixing maintains the physical identity of distinct, though somewhat hybridized, end-members. While (incomplete) chemical mixing is abundant, we also observe evidence for the transport of heat (or increased water content) only in the variation of An content in plagioclase at constant trace element concentrations.

4) The trend within mafic enclaves toward more mafic compositions with time at Kizimen indicates that generation (by fractional crystallization) of the evolved dacite is not keeping pace with mafic recharge and outputs are likely directly triggered by inputs.

Acknowledgments. Martin Streck, Pavel Izbekov and Andrey Babansky are thanked for their detailed and constructive comments on an earlier version of this manuscript. Brandon Browne and Boris Gordeichik helped a lot with graphics preparation. This work was possible with a support of grant DFG #Wo362/15-1+2 to G.W., DFG-RFBR grant #00-0504000 to T.C. and G.W., projects of "Program 13" of RAS Presidium, Ministry of Industry and Science projects #43.700.11.0005, 43.043.11.1606 and State Contract with Federal Agency of Science and Innovations' Department of Survey and New Technologies Development #01.700.12.0028 to T.C.

## 7. REFERENCES

- Allégre, C. J., A. Provost, and C. Jaupart, Oscillatory zoning: a pathological case of crystal growth, *Nature*, 294, 223–228, 1981.
- Ariskin, A. A., G. S. Barmina, M. Ya. Frenkel, and R. L. Nielsen, COMAGMAT: a Fortran program to model magma differentiation processes, *Computers and Geosciences*, 19, 1155–1170, 1993.
- Bindeman, I. N., A. M. Davis, and M. J. Drake, Ion microprobe study of plagioclase—basalt partition experiments at natural concentration level of trace elements, *Cosmochim Geochim Acta* 62, 1175– 1193, 1998.
- Brophy, J. G., M. J. Dorais, J. Donnelly-Nolan, and B. Singer, Plagioclase zonation in hornblende gabbro inclusions from Little Glass Mountain, Medicine Lake volcano, California: implications for fractionation mechanisms and the formation of composition gaps, *Contrib Mineral Petrol*, 126, 121–136, 1996.
- Browne, B. L., J. C. Eichelberger, L. Patino, T.A. Vogel, J. Dehn, K. Uto, and H. Hoshizumi, Generation of porphyritic and equigranular mafic enclaves during magma recharge events at Unzen Volcano, Japan, J. Petrol, 47, 301–328, 2006.
- Churikova, T. G., and S. Yu. Sokolov, The magmatic evolution of Ploskie Sopky volcano, Kamchatka (analyses of Sr isotopic geochemistry), *Geochemistry*, 10, 1439–1448, 1993.
- Churikova, T., F. Dorendorf, and G. Wörner, Sources and Fluids in the Mantle Wedge Below Kamchatka, Evidence from Across-Arc Geochemical Variation, J. of Petrology, 42 (8), 1567–1593, 2001a.
- Churikova, T., B. Ivanov, J. Eichelberger, S. Trusov, J. Gardner, A. Belousov, B. Browne, P. Izbekov, and G. Wörner, Kizimen Volcano: An Unzen-like Magma System in Kamchatka, *AGU Fall Meeting*, *EOS*, 82 (47), F1381, 2001b.
- Davidson, J. P., F. J. Tepley, Recharge in volcanic system: evidence from isotope profiles of phenocrysts, *Science*, 275, 826–829, 1997.
- Drake, M. J., and D. F. Weill, Partition of Sr, Ba, Eu2+, Eu3+ and other REE between plagioclase feldspar and magmatic liquid: an experimental study, *Geochim Cosmochim Acta*, 39, 689–712, 1975.
- Dorendorf, F., U. Wiechert, and G. Wörner, Hydrated sub-arc mantle: a source for the Kluchevskoy volcano, Kamchatka Russia, *Earth and Planetary Science Letters*, 175, 69–86, 2000a.
- Dorendorf, F., T. Churikova, A. Koloskov, and G. Wörner, Late Pleistocene to Holocene activity at Bakening volcano and surrounding monogenetic centers (Kamchatka): volcanic geology and geochemical evolution, *Journal of Volcanology and Geo*thermal Research, 104, 131–151, 2000b.
- Eichelberger, J. C., P. Izbekov, and B. Browne, Bulk chemical trends at arc volcanoes are not liquid lines of descent, *Lithos*, 87, 135–154, 2006.
- Ginibre, C., A. Kronz, and G. Wörner, High-resolution quantitative imaging of plagioclase composition using accumulated backscattered electron images: new constraints on oscillatory zoning, *Contrib Mineral Petrol*, 142, 436–448, 2002a.
- Ginibre, C., G. Wörner, and A. Kronz, Minor- and trace-element zoning in plagioclase: implications for magma chamber processes at Parinacota volcano, northern Chile, *Contrib Mineral Petrol*, 143, 300–315, 2002b.
- Grove, T. L., M. B. Baker, and R. J. Kinzler, Coupled CaAl-NaSi diffusion in plagioclase feldspar: Experiments and application

to cooling rate speedometry, *Geochim Cosmochim Acta*, 58, 2113–2121, 1981.

- Longhi, J., D. Walker, and J. F. Hays, Fe and Mg in plagioclase. *In: Proc 7th Lunar Sci Conf*, 1281–1300, 1976.
- Marsh, B. D., Magma chambers, *Annu Rev Earth Planet Sci*, 17, 439–474, 1989.
- Melekestsev, I. V., V. V. Ponomareva, and O.N. Volynets, Volcano Kizimen (Kamchatka)—future Sent-Helens, *Volcanology and seismology*, 4, 3–31, 1992.
- McNeill, A. W., and L. V. Danyushevsky, Composition and crystallization temperatures of primary melts from hole 896A basalts: evidence from melt inclusion studies. *In: Proc. ODP, Scientific results*, 148, 21–35, 1996.
- Nakada, S., and Y. Motomura, Petrology of the 1991–1995 eruption at Unzen; effusion pulsation and groundmass crystallization, *J. Volcanol. Geotherm. Res.* 89, 173–196, 1999.
- Sato, H., Mg-Fe partitioning between plagioclase and liquid in basalts of Hole 504B, ODP Leg 111: A study of melting at 1 atm, *Proc. Ocean Drilling Program, Sci. Results*, 111, 17–26, 1989.
- Sun, S. S., and W. F. McDonough, Chemical and isotopic systematics of oceanic basalts; implications for mantle composition and

processes, in: Saunders, A.D. & Norry, M.J. (eds) Magmatism in the ocean basins. Geological Society Special Publications. London: Geological Society of London, 313–345, 1989.

- Tepley, F. J. III, J. P. Davidson, R. I. Tilling, and J. G. Arth, Magma mixing, recharge and eruption histories recorded in plagioclase phenocrysts from El Chichon Volcano, Mexico, *J Petrol*, 41, 1397–1411, 2000.
- Todt, W., R. A. Cliff, A. Hanser, and A.W. Hofmann, <sup>202</sup>Pb-<sup>205</sup>Pb spike for Pb isotope analysis. *Terra Cognita*, 4, 209, 1984.
- Trusov, S. V., and P. Yu. Pletchov, Formation of antidromic series of the Kizimen volcano (Kamchatka). *International petrographical Meeting "Petrography of XXI century", June, Apatiti*, 2005 (in Russian).

Alaska Volcano Observatory, Geophysical Institute, University of Alaska Fairbanks, USA

Geowissenschaftliches Zentrum Göttingen, Universität Göttingen, Germany

Institute of Volcanology and Seismology, Piip Avenue, 9, Petropavlovsk-Kamchatsky, 683006, Russia