УДК 551.21+550.42

ВУЛКАНИЧЕСКИЙ МАССИВ БОЛЬШОЙ СЕМЯЧИК (КАМЧАТКА): СОСТАВ ПОРОД, МИНЕРАЛОВ, ВОПРОСЫ ПЕТРОГЕНЕЗИСА

© 2015 г. Е. Н. Гриб¹, В. Л. Леонов¹, А. Б. Перепелов²

¹Институт вулканологии и сейсмологии ДВО РАН 683006 Петропавловск-Камчатский, бульвар Пийпа, 9,

е-mail: gen@kscnet.ru ²Институт геохимии им. А.И. Виноградова СО РАН 664303 Иркутск, ул Фаворского, 1А,

e-mail:region@igc.ikr.ru

Впервые приведена детальнаяхарактеристика петрографических, минералогических и геохимических особенностей комплекса пород вулканического массива Большой Семячик (ВМБС). Формирование массива происходило в три этапа: докальдерный, кальдерообразующий и посткальдерный. Состав пород варьирует от умеренно магнезиальных базальтов (48.86-51.87 мас. %, SiO,, 7.4-8.3 мас. % MgO) до риолитов (75.12 мас. % SiO,, 3.86 мас. % К,О. На докальдерном этапе преобладали андезибазальты и андезиты. Изменение состава пирокластических отложений от риолитов до андезитов свидетельствует о зональном строении верхнекорового магматического очага под кальдерой. После извержения игнимбритов, верхнекоровый очаг пополнился базальтами. Присутствие в породах неравновесных минеральных ассоциаций, сложная зональность вкрапленников позволяет предполагать гибридную природу практически всех пород ВМБС. Вариации породообразующих окислов и микроэлементов в вулканитах указывают на ведущую роль фракционной кристаллизации в происхождении всего спектра пород района. Низкое содержание РЗЭ в магнезиальных базальтах ВМБС, обеднение их высокозарядными элементами предполагают связь родоначальных расплавов с деплетированным мантийным источником типа N-MORB. Высокая концентрация в них флюидмобильных крупноионных элементов (Cs, Rb, Ba, K, Pb, Sr) свидетельствует об участии в процессах магмогенерации флюидов, отделяемых от субдуцируемой океанической плиты. Приведена концептуальная модель магматической системы.

DOI: 10.7868/S0203030615020030

введение

Вулканический массив Большой Семячик (ВМБС) — сложное вулканическое сооружение, расположенное на центральном участке Восточной Камчатки (рис. 1). Он состоит из множества небольших, слившихся основаниями, вулканов, а также ряда экструзивных куполов, расположенных компактно на относительно небольшой территории [Влодавец, 1953,1957,1958; Леонов,

Гриб, 1991, 2004]. Подробное описание геологического строения района было приведено в отдельной работе [Леонов, Гриб, 2014]. В настоящей статье мы отметим лишь основные черты строе-

ния района.

В строении массива выделяются докальдерный. кальдерообразующий и посткальдерный комплексы пород. Породы докальдерного комплекса вскрываются в западной части массива, на склонах хребта Борт, представляющего собой остаток докальдерной постройки, а также в северо-восточной части рассматриваемого района. В этих местах сохранились фрагменты стратовулканов с преимущественно основным базальтовым, андезибазальтовым и андезитовым составом вулканитов. Породы, относящиеся к *кальдерообразу*ющему комплексу, представлены в основном игнимбритами, которые занимают обширные пространства вокруг массива Большой Семячик. Их формирование связано с образованием кальдеры.

К посткальдерному комплексу относятся: толща озерных отложений, заполняющих кальдеру, а также лава и пирокластика многочисленных небольших вулканов, расположенных как за пределами кальдеры, в основном к востоку от нее, так и внутри или вблизи ее. Среди наиболее древних вулканов посткальдерного периода выделяется пять вулканов: Проблематичный, Центральный Семячик, Попкова, Плоско-Кругленький и Бурлящий. Более молодую группу составляют вулканы Западный Бараний, Восточный Бараний и (Большой Семячик). Зубчатка Все описанные стратовулканы имеют одинаковое строение: разрезы представлены чередованием маломошных (1-3 м) лавовых потоков и мошных пачек грубослоистых туфобрекчий и туфоагломератов. Про-

ВУЛКАНИЧЕСКИЙ МАССИВ БОЛЬШОЙ СЕМЯЧИК (КАМЧАТКА)

Рис. 1. Космический снимок (вверху) и блокдиаграмма (внизу) вулканического массива Большой Семячик (ВМБС). 1 - хребет Борт (остатки докальдерной постройки), пунктиром обозначены структурные границы кальдеры; 2 — вулканы (а) и экструзивные купола (б) посткальдерного этапа (2 — Западный Бараний, 3 — Восточный Бараний, 4 — Кулакова, 5 - Опальный, 6 — Попкова, 7 - Плоско-Кругленький, 8 - Проблематичный, 9 - Иванова, 10 — Бурлящий, 11 - Центральный Семячик, 12 - Зубчатка (Большой Семячик), 13-группа экструзивных куполов); 3 - экструзивные купола; 4 лавовые потоки; 5 — разломы. На врезке показано местоположение района на полуострове Камчатка.

дукты эксплозивной деятельности преобладают над лавовым материалом. Коэффициент эксплозивности составляет 60-70%.

Кроме вулканов, в пределах ВМБС расположены также многочисленные экструзивные купо-

ла, внедрившиеся на посткальдерном этапе. Подробное описание куполов приведено в работе [Леонов, Гриб, 2014].

Хотя геологическое строение вулканического массива Большой Семячик изучено достаточно

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 2 2015

Рис. 2. Гистограмма распределения SiO² в породах ВМБС. 1 - докальдерный этап; 2 — кальдерообразующий этап; 3 — посткальдерный этап.

детально, опубликованные данные о составе вулминералов-вкрапленников канических пород и фрагментарны и касаются в основном продуктов, формированием связанных с кальдеры [Гриб. Леонов, 1992; Леонов, Гриб, 1998; Леонов и др., 2000]. Это не позволяет составить представление о процессах, связанных с эволюцией расплавов, и природе магматического источника. Пелью настоящей работы является изучение петрографиособенностей, минерального состава ческих И геохимии всего комплекса пород изученной структуры.

МЕТОДИКА ИССЛЕДОВАНИЙ

Определение составов минералов в вулканических породах ВМБС проводилось как в полированных аншлифах пород, так и с использованием мономинеральных фракций. Анализ минералов микроанализаторе получен на электронном оборудованным "Camebax-244". энерго-диспер-Институте сионным спектрометром "Kevex" в вулканологии и сейсмологии ДВО РАН. Ускоряющее напряжение 20 кВ, ток 40 нА. Количество анализов составило от 50 до 150 для каждого из исследованных минералов.

Валовые силикатные химические анализы вулканитов выполнены в Центральной химической лаборатории Института вулканологии и сейсмологии ДВО РАН методом полного силикатного анализа, за исключением Na₂0 и K₂0, которые определены методом пламенной фотометрии. Содержания редких и редкоземельных элементов определены метолом ICP-MS на приборе ELEMENT 2 (Finnigan MAT. Germany) Институте геохимии в ИМ. А.П. Виноградова СО РАН. Методика исследований на приборе ELEMENT 2 изложена в работе [Перепелов и др., 2007]. Для аналитического контроля использовались стандартные образцы базальтов (BIR-1, B-2, BCR-2, BHVO-1) и андезита (AGV-1).

ПЕТРОГРАФИЯ И МИНЕРАЛОГИЯ ВУЛКАНИЧЕСКИХ ПОРОД

Породы вулканического массива Большой Семячик (ВМБС) образуют дифференцированный ряд от базальтов до риолитов. Роль отделенных типов пород менялась в процессе формирования структуры (рис. 2).

Базальты и андезибазальты. По составу минеральных ассоциаций выделяются двупироксеновые (PI + Cpx + Opx \pm OГ) и оливинсодержащие (P1 + Cpx + O1 + Opx) разности. Количество вкрапленников в базальтах варьирует от 35-40% в раскристаллизованных разностях пород до 15% — в менее раскристаллизованных. Двупироксеновые базальты характерны для вулканов Проблематич-

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 2 2015

ими. Центральный Семячик и Плоско-Кругленький. В основании разрезов лавы имеют темно-серый цвет, массивную текстуру, отличаются умемагнезиальностью ренной И незначительным содержанием вкрапленников. Местами они подвержены вторичным изменениям. В лавах встречаются единичные мелкие (0.2-0.3 мм) зерна оливина. иногда полностью замешенные мини сигом. В верхней части разрезов базальты отличаются более свежим обликом, выраженной порфировой структурой. в основном за счет вкрапленников плагиоклаза. В основании разреза внутрикальдерного вулкана Западный Бараний (в среднем течении реки Большой Семячик) двупирокскновые базальты и андезибазальты лежат на озерных вулканогенно-осадочных псефито-псаммитовых туфах заполнения кальдеры, а также в виде блоков (в ассоциации с озерными отложениями) в привершинной части экструзии Кулакова, испытавшей в верхнем плейстоцене резургентное поднятие [Леонов, Гриб, 2014]. Оливинсодержашие базальты и андезибазальты слагают лавовые потоки на вулканах Попкова и Зубчатка, встречаются в виде небольшого выхода на экструзии Крайней, в ассоциации с псефитовыми туфами. Включения оливинсодержащих базальтов и андезибазальтов в виде шлаков характерны для игнимбритов андезитового состава третьего этапа кальдерообразующих извержений в рассматриваемом районе, а также в виде мелкозернистых включений в андезитах и риодацитах экструзивных куполов. Основная масса базальтов микролитовая, гиалопилитовая, сложена бурым вулканическим стеклом, в которые погружены лейсты и микролиты плагиоклаза, мелкие зерна пироксена и рудного минерала.

Андезиты, дациты широко развиты на докальлерном и посткальлерном этапах. На локальлерном этапе андезиты представлены давовыми потоками на севере и западе района в ассоциации с андезитобазальтами. Северная часть хребта Борт сложена лавами дацитового состава. В процессе формирования кальдеры доля андезитов и дацитов незначительна, но их появление в разрезах пирокластических отложений на завершающих этапах каждой из фаз (I - III), представленных преимущественно риодацитами, свидетельствует о зональном строении верхнекорового магматического очага на момент, предшествующий катастрофическим эксплозивным извержениям [Гриб, Леонов, 1992]. На посткальдерном этапе

Грио, леонов, 1992]. На посткальдерном этапе этот тип пород формирует в восточной части вулканического массива многочисленные экструзивные купола (и связанные с ними лавовые потки) в верхнем плейстоцене и голоцене. Они концентрируются на восточных склонах (голоценовые) и в разрушенных кратерных зонах (верхнеплейстоцен-голоценовые) вулканов Проблематичный и Центральный Семячик. В западной части структуры андезиты слагают верхнюю часть разреза внутрикальдерного вулкана Западный Бараний и вулкана Восточный Бараний. Структура этого типа пород в основном порфировая, реже субафировая. Количество кристаллической фазы варьирует в пределах 18-30%, а в субафировых лавах вулкана Западный Бараний не превышает 5-7% от объема породы. Для андезитов характерна минеральная ассоциация P1 + Cpx + Opx + TiMt; в лавах верхнеплейстоценовых куполов встречаютфенокристаллы кварца и микрозернистые ся включения базальтов округлой и фестончатой формы, в лавах голоценовых куполов — единичные вкрапленники оливина. Структура основной массы микролитовая, пилотакситовая. Для всех андезитов характерны полиминеральные гломеропорфировые сростки.

Риодациты, риолиты. Эта группа пород широко представлена на этапе формирования кальдеры (см. Пирокластические породы начальной рис. 2). фазы (In) представлены не спекшимися пемзовыми туфами риолитового состава (72-75.1 мас. % SiO₂), содержащими минеральную ассоциацию Pl + Q + + Bi + TiMt ± Amf и развитыми на юго-востоке вулканического массива, а также слабо спекшимися пемзовыми туфами — на западе, в районе реки Верхний Стан [Гриб. Леонов. 1992]. Завершается первая фаза риолацитовыми кварцеодержащими (без биотита и роговой обманки) игнимбритами (Ia) и игнимбритами андезитового состава (16). Вторая фаза кальдерообразующих извержений (П) представлена лавоподобными реоигнимбритами риодацитового состава (68-71.5 мас. % SiO₃), составляющими основной объем пирокластических отложекальдерным ний связанных С комплексом ВМБС. Лавоподобный облик игнимбритов, отмеченный еще В. И Влодавцем [Влодавец, 1953, 1957, 1958], свидетельствует о высокой степени их спекания, для них характерна P1 + Px + TiMt + Ilm минеральная ассоциация. Незначительные объемы риодацитов наблюдаются на посткальдерном этапе. Они образуют экструзивные купола Опальный и Кулакова (69-71.5 мас. % SiO₂) у северного ограничения кальдеры и лавовый поток на западном склоне вулкана Попкова (68-70 мас. % SiO₂). Эти образования приурочены к кольцевому разлому кальдеры. Несмотря на незначительные расстояния между куполами, они отличаются по минеральному составу. Для риодацитов экструзий Опальная и Кулакова характерна минеральная ассоциация PI + Q + Px + Amf + TiMt, в то время как риодациты лавового потока содержат безводную ассоциацию вкрапленников (P1 + Px + TiMt ± Ilm). Для риодацитов свойственны все типы структур, характерные для кислых пород: от пемзовидной и стекловатой в верхних частях разрезов лавовых потоков через сферолитовую до микрофельзитовой. В привершинной части и в глубоких врезах

ГРИБ и др.

Рис. 3. Состав вкрапленников плагиоклаза в различных по составу породах ВМБС.

ручьев северного борта купола Кулакова основная масса риодацитов более рас кристаллизована, образуя структуры от аллотриоморфной до микрогранофировой. Они характерны для жерловых фаций и связаны с резургентрым поднятием этого сектора кальдеры [Леонов, Гриб, 2014]. Количество вкрапленников в кислых вулканитах варьирует в пределах 10-25% от объема пород.

Ниже приводятся данные по составам минералов-вкрапленников различных типов пород (рис. 3-5, табл. 1).

Плагиоклаз. По количественному составу плагиоклаз преобладает во всех типах вулканических пород. Содержание его варьирует от 10-17 об. % в базальтах, андезибазальтах, андезитах до 5-8 об. % — в Размер ланитах. риодацитах. вкрапленников изменяется от 0.5 до 2.5 мм, реже до 4.5 мм, субфенокристаллов — в пределах 0.2-0.4 мм. Состав ядерных зон вкрапленников плагиоклаза в базальтах соответствует анортит-битовниту (Ап₈₅₋₉₂), субфенокристаллов битовниту (Ап_{72—78}); во внешних зонах и в основной массе кристаллизуется Лабрадор (Ап₅₆₋₇₀) (см. рис. 3, табл. 1). Иногда отмечается трехзонное строение кристаллов с относительно натриевой промежуточной зоной. В андезибазальтах появляется группа вкрапленников, ядра которых имеют состав Лабрадора, более кальциевого в лавах посткальдерного этапа. В вулканитах среднего состава фенокристаллы Р1 представлены преимущественно андезин-лабрадором (Ап₅₀₋₆₂). Вкрапленники слабо зональны, нередко имеют обратную зональность. В андезитах верхнеплейстоценовых куполов встречаются фенокристаллы размером до 4.5 мм, ядра которых, в одних случаях оплавлены, а смежные с ними высококальциевые зоны отличаются по составу на 20-30 единиц An; в других — анортитовые ядра ситовидного облика, окружены тонкой чистой каймой андезина. Вкрапленники плагиоклаза в андезитах и андезидацитах вулкана Западный Бараний не зональны или слабо зональны, что свидетельствует об относительно спокойных условиях кристаллизации расплава. В кислых лавах ВМБС ядра фенокристаллов представлены андезином (Ап₃₅₋₅₀), более натриевым в риодацитах экструзии Кулакова. В относительно раскристаллизованных лавах в привершинной части этого купола во внешних зонах вкрапленников плагиоклаза отмечается прогрессивное возрастание ортоклазоваго минала вплоть до кристаллизации олигоклаза (Ап22-28). В игнимбритах пирокластических потоков риолитового и риодацитового состава среди вкрапленников плагиоклаза преобладает олигоклаз-андезин (Ап₂₈₋₄₀), а в по-

Рис. 4. Соотношение магния-кальция-железа (En-Wo-Fs) во вкрапленник клино- и ортопироксена в различных по составу породах ВМБС.

а — пирокластические отложения, связанные с образованием кальдеры: овал — первый этап; точки — второй этап; кружки — третий этап; б-г — посткальдерные вулканические породы: б — базальты: оливинсодержащие — залитые квадраты, двупироксеновые — полые ромбы; в — андезиты верхнеплейстоценовых (залитые квадраты) и голоценовых (полые ромбы) куполов, более мелкие знаки в б и в — микролиты; г — залитые кружки — андезиты, дациты вулкана Западный Бараний, овал — риодациты.

токах дацитового и андезитового состава — андезин-лабрадор (Ап_{45.60}) [Гриб, Леонов, 1992]. B средне-кислых вулканических продуктах отмечается бимодальность состава вкрапленников плагиоклаза, более выраженная в андезитах. Высококальциевые плагиоклазы (An₇₅₋₇₈) встречаются преимущественно в ядрах и промежуточных зонах кристаллов, реже — во внешних, формируя обратную зональность. Плагиоклаз обычно образует мономинеральные сростки, реже встречается и ассоциации с пироксеном, а в базальтах и с оливином.

Пироксен является ведущим темноцветным минералом пород ВМБС. Количество его в среднем составляет 2-5% от объема породы. Наибовысокие содержания пироксена (5-7%) халее рактерны для базальтов и андезибазальтов вулка-Попкова и Плоско-Кругленький, где их HOB размеры достигают 2.5 мм. Форма вкрапленников призматическая в основных и средних по составу породах, для кислых вулканитов характерны короткопризматические и изометричные зерна. B (базальтах клинопироксен представлен преимуавгитом (Mg_{70_75}, щественно магнезиальным Wo₃₈₋₄₁ En₄₂₋₄₄) (см. рис. 4, табл. 1). В лавах вулканов Центральный Семячик и Проблематичный он не зонален или слабо зонален; в некоторых

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 2 2015

вкрапленниках оливинсодержащих базальтов отмечается обратная зональность, выраженная в увеличении Mg[#] к краю зерен. Наибольшие вариации составов фенокристаллов клинопироксена и сложная зональность отмечены в базальтах вулкана Попкова. Наряду с преобладающими вкраплен-

Na+K,φ.e.

Рис. 5. Соотношение суммарного алюминия и щелочей (формульные единицы) во вкрапленниках роговой обманки в пирокластических отложениях (залитые кружочки) и в риодацитах экструзии Кулакова (полые кружочки) ВМБС.

Таблица 1. Представительные составы минералов-вкрапленников в породах вулканического массива Большой Семячик

Индекс минерала	SiO ₂	TiO ₂	A1 ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	An, Mg [#] , 2
				Док	сальдерны	й этап				
Андезибаз	альты							1		
Plц	46.85	0.0	34.12	0.65	0.0	0.0	16.63	1.68	0.0	84.5
Р1,н	49.24	0.0	33.19	0.66	0.0	0.0	15.33	2.56	0.12	76.2
Р1кр	53.89	0.0	29.29	0.64	0.0	0.0	11.28	4.72	0.34	55.7
Cpx _u	51.91	0.35	2.06	9.18	0.40	14.81	20.53	0.0	0.0	74.2
Opx _u	53.28	0.12	1.16	18.51	0.69	24.57	1.28	0.0	0.0	70.3
01 ₁	39.47	0.0	0.0	17.62	0.32	43.51	0.13	0.0	0.0	81.5
TiMt	0.0	14.27	0.80	81.02	0.18	1.60	0.0	0.0	0.0	97.8
				Кальде	рообразук	ощий этап	ſ			
In				-						
Р1ц	58.55	0.0	25.69	0.32	0.0	0.0	7.09	7.30	0.41	34.11
Р1ц	60.94	0.0	23.70	0.18	0.0	0.0	5.24	8.25	0.60	25.08
Bi	36.20	4.36	13.75	16.04	0.27	14.46	0.0	0.42	8.90	61.6
TiMt	0.0	7.08	1.31	87.67	1.15	0.77	0.0	0.0	0.0	98.33
Amf _u	49.52	1.03	5.66	12.38	0.96	14.64	10.94	1.67	0.34	67.8
Cpx _u	53.56	0.15	0.75	8.99	0.62	13.64	21.47	0.38	0.01	73.0
Opx _u	53.19	0.15	0.38	22.12	1.29	21.29	1.16	0.0	0.02	63.2
G1	75.80	0.05	12.90	0.53	0.0	0.05	0.57	2.38	5.46	97.74
Ilm	0.0	40.68	0.08	56.2	1.05	0.95	0.01	0.0	0.0	98.94
Ia										
Р1ц	60.40	0.0	25.00	0.12	0.0	0.0	7.83	6.87	0.43	37.7
Opx ₁₁	52.60	0.06	0.25	22.90	0.95	20.31	1.01	0.0	0.01	61.2
Opx ₁₁	52.86	0.11	0.32	25.17	1.30	19.03	0.27	0.0	0.0	57.4
Cpx ₁₁	52.80	0.10	0.65	10.58	0.51	13.54	21.16	0.10	0.01	69.5
TiMt	0.0	8.01	0.76	89.40	0.51	0.62	0.0	0.0	0.0	99.28
11т	0.0	44.35	0.03	52.91	1.19	1.27	0.0	0.0	0.0	99.75
Gl	73.98	0.25	12.62	1.26	0.05	0.11	0.75	4.94	3.43	97.45
Іб	1									
Р1ц	56.27	0.0	27.52	0.53	0.0	0.0	10.44	5.49	0.20	50.67
ОрХц	53.27	0.20	0.74	19.45	0.91	23.64	1.42	0.0	0.01	68.4
Срхц	51.69	0.43	1.64	9.82	0.39	14.39	20.15	0.03	0.0	72.3
TiMt	0.0	10.17	1.11	85.31	0.60	0.88	0.0	0.0	0.0	98.07
I1m	0.0	42.37	0.0	53.83	1.21	1.39	0.0	0.0	0.0	98.87
II	-	5.0	1				1.111			
Р1ц	53.86	0.0	29.03	0.31	0.0	0.0	12.06	4.91	0.17	57.00
Р1пз	56.76	0.0	27.13	0.26	0.0	0.0	8.83	6.70	0.42	41.56
Р1кр	60.39	0.0	25.09	0.34	0.0	0.0	6.31	1.11	0.66	29.82
Рц	56.25	0.0	27.71	0.37	0.0	0.0	9.41	6.23	0.22	44.93
Рікр	60.48	0.0	25.38	0.30	0.0	0.0	6.65	7.69	0.49	31.43
Орхц	51.51	0.07	0.19	25.24	1.91	18.98	1.26	0.0	0.0	57.28
Срхц	52.91	0.27	1.77	11.17	0.84	13.97	19.69	0.0	0.0	69.05
TiMt	0.0	11.99	0.93	84.13	0.99	0.59	0.0	0.0	0.0	98.65
llm	0.0	43.99	0.06	51.15	1.40	2.08	0.0	0.0	0.0	98.70

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 2 2015

Таблица 1. Окончание

Индекс минерала	SiO ₂	TiO ₂	A1203	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O	An, Mg [*] , 2
III										
РІц	56.55	0.0	27.36	0.54	0.0	0.0	9.80	6.09	0.34	46.44
Р1 ц	46.49	0.0	34.42	0.66	0.0	0.0	17.33	1.45	0.02	86.84
Plkn 52 72		0.0	30.12	0.63	0.0	0.0	12.49	4.24	0.18	61.27
Орх ц	52.30	0.19	0.57	23.72	0.94	20.59	1.73	0.0	0.0	60.70
Opx _{kp}	52.72	0.26	0.58	24.4	1.02	19.6	1.76	0.0	0.0	58.9
Срх ц	51.82	0.40	1.10	13.03	0.63	13.29	18.93	0.0	0.0	63.44
Срх ц	52.72	0.15	1.01	8.51	0.49	14.37	21.60	0.0	0.0	75.06
TiMt	0.0	12.26	1.42	84.46	0.77	0.75	0.0	0.0	0.0	99.24
01 ц	39.14	0.0	0.0	21.92	0.40	39.93	0.15	0.0	0.0	76.45
G1	70.6	0.61	13.85	4.77	0.09	0.78	2.67	4.7	3.4	101.47
				Пос	ткальдерн	ый этап			5	
Базальты о	оливинсо	держащие	;							
Plц	44.94	0.0	35.36	0.67	0.0	0.07	18.16	0.95	0.02	91.30
Pl 11 47 68		0.0	33.80	0.86	0.0	0.07	17.22	1.80	0.03	84.00
Орхц	54.62	0.05	2.91	13.26	0.22	27.46	1.36	0.03	0.0	78.68
Opx _{KP}	54.21	0.05	1.05	14.79	0.23	25.90	1.80	0.03	0.00	75.74
Срхц	51.62	0.26	4.07	7.05	0.03	14.98	20.91	0.32	0.00	79.10
Срхпз	51.37	0.29	4.40	5.42	0.03	15.16	21.94	0.27	0.00	83.30
Cpx _{kp}	51.64	0.31	2.61	9.76	0.13	14.52	19.39	0.37	0.0	72.60
Оіц	39.68	0.0	0.0	17.24	0.20	43.53	0.10	0.0	0.0	81.82
Ol _{kp}	38.63	0.0	0.0	21.01	0.23	39.39	0.14	0.0	0.0	76.96
Базальты 🧔	двупирок	сеновые	10				1			
Р1ц	45.63	0.0	35.13	0.70	0.0	0.06	17.71	1.35	0.04	87.66
Pl	53.69	0.10	1.62	17.85	0.29	24.60	2.16	0.03	000	71.09
Срхц	51.26	0.43	2.92	9.58	0.09	15.42	18.52	0.25	0.0	74.16
Андезиты		/!								
Plц	50.67	0.0	31.19	0.56	0.0	0.03	14.03	3.06	0.10	71.32
Pl	51.74	0.0	30.56	0.64	0.0	0.02	12.99	3.65	0.16	65.68
Орхц	51.60	0.33	1.57	14.46	0.74	18.46	2.01	0.01	0.0	56.86
Срхц	51.89	0.16	1.04	10.35	0.43	13.16	21.31	0.04	0.0	68.48
TiMt	0.0	7.94	1.79	87.99	0.37	1.61	0.0	0.0	0.0	99.70
Риодацить	ы (купол .	ЈКулакова)								
РІп	58.27	0.0	26.30	0.26	0.0	0.0	8.47	6.42	0.25	41.52
Орхц	52.10	0.14	0.55	22.77	1.37	20.87	1.02	0.03	0.0	60.63
Срхц	51.57	0.22	1.06	9.77	0.59	14.21	21.61	0.23	0.0	70.95
	47.52	1.29	6.16	13.68	0.43	14.91	11.06	1.46	0.22	65.31

примечание. I, II, III — фазы кальдерообразующего этапа; In, la, 16 — пирокластические отложения риолитового, риодацитоюго и андезитового составов последовательных порций первого этапа; обозначения минералов: P1 — плагиоклаз, Opx — ортопироксен, Cpx - клинопироксен, 01 - оливин, Amf- амфибол, Bi — биотит, TiMt - титаномагнетит, IIm — ильменит, G1 — остаточное стекло в пемзовых туфа; ц, пз, кр центральная, промежуточная и краевая зоны вкрапленников; An — минал пла-"иоклаза, Mg[#] — магнезиальность темноцветных минералов, Ë — сумма петрогенных окислов в рудных минералах и остаточных стеклах. никами, сложенными магнезиальным авгитом, встречаются кристаллы, представленные диопсидавгитом (Mg_{78-83}^{*} , Wo_{43-44} En) с повышенным содержанием хрома ($Cr_2O_3 = 0.2 - 0.5$ мас. %) и алюминия ($Al_2O_3 = 4 - 4.9$ мас. %). Они также слагают ядра, промежуточные и внешние зоны в зональных вкрапленниках. Пироксен в основной массе базальтов эволюционирует до субкальциевого авгита и пижонита.

В средне-кислых породах содержание клинопироксена не превышает 2%, достигая максимума в лавах и пирокластике андезитового состава; размеры вкрапленников варьируют от долей мм до 1-1.5 мм. Для андезитов характерно присутствие двух групп вкрапленников, отличающихся по составу, роль которых меняется в зависимости от содержания SiO₂. В разностях с повышенным содержанием кремнекислоты, как в пирокластических отложениях, так и в куполах и лавовых потоках, преобладает железистый авгит (Мд $Wo_{38-39}En_{40-41}$). Вторую группу образуют вкрапленники магнезиально-железистого авгита $(Mg_{69-74}^{*}, Wo_{43-45}^{*}En_{39-40})$, которые характерны для низкокремнистых андезитов голоценовых куполов, лав вулканов Западный Бараний и Восточный Бараний. В андезитах верхнеплейстоценовых куполов, лавовых потоках вулкана Проблематичного они встречаются в виде единичных зерен. Железистые и магнезиально-железистые авгиты образуют различные сочетания в зональных вкрапленниках, формируя ядра, промежуточные или внешние зоны. Вкрапленники клинопироксена в риодацитах отличаются повышенным содержанием кальция и умеренным железа $(Mg_{66}^{-73}$ Wo En $_{42-44}$ Simon CTE и в вулканических породах, содержащих роговую обманку и биотит [Гриб, 1997; Гриб, Леонов, 1992; Леонов и др., 2000]. Это в одинаковой мере относится к лавам и игнимбритам.

Ортопироксен встречается в виде вкрапленников, субфенокристаллов, твердофазных включений в плагиоклазе, клинопироксене, оливине, иногда образует реакционные каймы вокруг вкрапленников последнего. Содержание его варьирует от долей процента в кислых породах до 2—3% в андезитах и базальтах. В базальтах преобмагнезиально-железистый гиперстен ладает (Mg^{*}₆₈₋₇₂, En⁶⁶⁻⁶⁹). Наиболее магнезиальные разно-сти, представленные железистым бронзитом (Mg₇₅₋₇₈, En₇₂₋₇₃), встречаются в ядрах фенокристаллов в базальтах вулкана Попкова, в виде твердофазных включений в диопсид-авгите (Mg_{70 02}), обрастают вокруг корродированных железистых ядер в случае кристаллов с обратной зональностью, а также образуют реакционные оторочки

вокруг вкрапленников оливина. Отличительной особенностью вкрапленников Орх в базальтах вулкана Шентральный Семячик является высокое (4.3-4.8 мас. %) содержание в них волластонитового минала. В андезитах кристаллизуется в основном гиперстен ($Mg^{*}_{65,68}$, En_{67-67}). Вкрапленники Орх в верхнеплейстоценовых куполах часто окружены опацитовой каймой, а иногда полностью замещены рудным минералом. В лавах голоценовых куполов во внешних зонах кристаллов нередко кристаллизуется магнезиальный гиперстен $(Mg^{*}_{70-72}, En_{66-69})$. Значительно отличаются по степени железистости вкрапленники в вулканитах кислого состава, различающихся по ассоциации темноцветных минералов-вкрапленников. Как и в случае с клинопироксеном, в лавах купола Кулакова, с повышенным содержанием роговой обманки, вкрапленники ортопироксена менее железистые $(Mg\#_{7/73})$ по сравнению с ги-перстенами $(Mg\#_{57-60})$ риодацитов лавового потока на вулкане Попкова, не содержащих ее. В игнимбритах железистость гиперстенов варьирует в широком диапазоне (Мg#____) и определяется временем кристаллизации титаномагнетита и наличием водосодержащих минералов [Гриб, Леонов, 1992; Гриб, 1997]. Наиболее железистые незональные вкрапленники ортопироксена, приближающиеся к феррогиперстену (Mg₄₅₋₅₀), отмечены в дацитах купола Полукупол на северном борту эродированного цирка вулкана Центральный Семячик.

Оливин. Максимальное его количество (порядка 2-3% от объема породы) наблюдается в базальтах вулканов Попкова и Зубчатка; в виде единичных зерен он встречается в лавах вулканов Центральный Семячик и Проблематичный, в посткальдерных андезибазальтах голоценовых куполов и игнимбритах андезитового состава. Размер зерен варьирует от 0.5-1.2 мм в фенокристаллах, до 0.2-0.3 мм в субфенокристаллах. В ядрах фенокристаллов состав его (см. табл. 1) соответствует хризолиту (Fo), во внешних зонах и в субфе-нокристаллах — гиалосидериту ($Mg_{67-70}^{#}$). Наиболее магнезиальные (Mg_{80-83}^{+}) разности встречается в базальтах вулкана Попкова в ассоциации с высококальциевым плагиоклазом, диопсид-авгитом и бронзитом. Для них большей частью характерны реакционные взаимоотношения с окружающим расплавом: обрастание тонкой каймой пижонита или магнезиального гиперстена. В базальтах вулкана Центральный Семячик встречены редкие субфенокристаллы оливина иногда нацело замешенные илингситом. Единичное зерно оливина было встречено в риодацитах лавового потока на вулкане Попкова. Вероятнее всего, это зерно попало в кислый расплав при дезинтеграции включений базальтового состава, которых достаточно много в этом лавовом потоке.

Амфибол в незначительных количествах (до 1%) встречается в кварц-биотитовых пемзовых туфах, которыми начинался процесс кальдерообразования и вулканическом массиве Большой Семячик, и к риодацитах экструзивных куполов Опальный и Кулакова (посткальдерный этап). Размер вкрапленников не превышает 1 мм; по составу они однородны и соответствуют магнезиально-железистой разновидности (Mg^{*}_{62-68}) обыкновенной роговой обманки (см. рис. 5, см. табл. 1). Роговая обманка лав экструзивных куполов отличается более повышенным содержанием суммарного глинозёма и, в меньшей степени, титана. Фенокристаллы иногда содержат твердофазные включения плагиоклаза PL₃₀₋₃₈ что свидетельствует об их совместной кристализации.

Биотит встречается только в риолитовых пемзовых туфах первого этапа кальдерообразования в ассоциации с роговой обманкой и кварцем. Содержание TiO₂ повышенное (4.2—5.6 мас. %), степень железистости составляет 32—34 (Mg[#]₆₆₋₆₈) (см. табл. 1).

Рудные минералы представлены титаномагнетитом и, в меньшей степени, ильменитом. Титаномагнетит в базальтах встречается в виде тонких выделений в основной массе; в виде вкрапленников (1-2% от объема породы) и обильных пойкилитовыхвключений в пироксенах впервые появляется и андезибазальтах. Содержание TiO, в титаномагнетитах составляет 9–13 мас. % в андезибазальтах и андезитах; в более кислых породах 4-8 мас. %. В ТіМt отмечается прямая корреляция содержания MnO от кислотности пород изменяясь в среднем от 0.3 мас. % в базальтах до 1.56 мас. % в риодацитах. Содержание ТіО, в ильменитах в средне-кислых породах составляет 42-45 мас. %, MnO = 0.7-2.8 мас. %.

Кварц в виде фенокристаллов встречается в верхнеплейстоценовых куполах андезитового состава, в риодацитах куполов Кулакова, Опальная и и наиболее ранних игнимбритах риолитового и риодацитового состава. Он представлен крупными (1.5—2. реже 3—4 мм) трещиноватыми кристалламми и их обломками. В андезитах зерна мирна часто корродированны или оплавлены. В риодацитах жерловой фации на куполе Кулакова фенокристаллы окружены кварц-полевошпатовой микрогранофировой оторочкой, отражающей эпизод более медленного охлаждения.

И качестве акцессорных минералов в вулканитах среднего состава присутствует апатит, кислого — циркон.

СОСТАВ ВУЛКАНИЧЕСКИХ ПОРОД

Породообразующие окислы. Содержание кремнекислоты в вулканических породах ВМБС варьирует от 48.2 до 75.1 мас. %, перекрывая на диаграмме Na, $O + K_2O - SiO_2$ все типы пород от базальтов до риолитов (рис. 6, табл. 2). По сумме шелочей они относятся к породам нормальной щелочности [Le Basetal., 1986]; по концентрации К.О базальты располагаются у границы низко- и умереннокалиевой серий, а все более кислые породы относятся к умереннокалиевой [Gill, 1981]. В область высококалиевых пород попадает один образец наиболее высокремнистых пемзовых туфов кальдерообразующего этапа. По критерию Миаширо (FeO*/MgO) [Mivashiro, 1974] базальты и андезибазальты лежат в поле толеитовой серии, все вулканиты средне-кислого состава приурочены к границе между породами толеитовой и известково-щелочной серий. По содержанию Al₂O₂ (18.01-20.87 мас. %) базальты относятся к высокоглиноземистым. Для выявления характера распределения породообразующих окислов в породах выбрана зависимость их содержаний от MgO, который является важным компонентом для характеристики степени дифференцированности пород (рис. 7а). Наиболее магнезиальные базальты встречены в основании разреза вулканов Центральный Семячик и Зубчатка (8.4 и 7.5 мае. % MgO, соответственно). На диаграммах выделяются два тренда. Первый, толеитовый, объединяет базальты, андезибазальты и низкокремнистые андезиты. При снижении MgO от 8.4 до 4 мас. % содержание практически всех компонентов в них меняется незначительно и только для SiO₂, FeO, TiO₂, P₂O₅ и щелочей отмечается тенденция к росту концентраций. В области значений 4.0-3.0 мас. % MgO происходит резкий перегиб в содержании петрогенных окислов и формируется известково-щелочной тренд. Он объединяет низкомагнезиальные базальты, андезибазальты и весь ряд средне-кислых пород. С уменьшением магнезиальности вулканитов отмечается закономерное снижение содержания FeO (7.6-2.9 мас. %), CaO (7.1-0.96 мас. %), Al₂O₃ (17.8—13.7 мас. %) и рост концентраций SiO, (56.8-75.4 мас. %), Na₂O (2.5-4.9 мас. %), K₂O (1.4—3.86 мас. %). Два тренда частично перекрывают друг друга в области 4.5-2.0 мае. % MgO и здесь наблюдается наибольший разброс концентраций. Известково-щелочной тренд в этом интервале отличается большей кремнекислотностью и щелочностью. Снижение концентраций A1,O,, CaO, FeO с уменьшением MgO свидетельствует об участии в процессах фракционирования железо-магнезиальных силикатов и плагиоклаза. Рост содержания TiO_2 и P_2O_5 на начальной стадии фракционирования связан с накоплением этих элементов в расплавах, а дальнейшее уменьшение с началом удаления из расплавов Fe—Ті окислов

Рис. 6. Классификационные диафаммы для пород ВМБС в координатах: а - Na₂O + K₂O-SiO₂ [Le Baset al., 1986]; б - K₂O-SiO₂ [Gill, 1981]; в - FeO*/MgO-SiO₂ [Miyashiro, 1974]. 1 — докальдерные базальты, андезибазальты, андезиты, дациты; 2 — пирокластисеские отложения, связанные с образованием кальдеры (спекшиеся туфы, игнимбриты); 3—6 — посткальдерные вулканические породы: 3 — базальты, андезибазальты стратовулканов, 4 — базальты, андезибазальты, андезиты, дациты внутрикальдерного вулкана Западный Бараний, 5 — купола и лавовые потоки преимущественно андезитового состава, 6 — купола и лавовые потоки риодацитового состава. Полем выделен ареал пород Карымского вулканического центра.

и апатита. Наибольший разброс значений характерен для андезибазальтов и андезитов верхнеплейстоценовых и голоценовых куполов, андезитов вулканов Проблематичный и Восточный Бараний, которые несут в себе явные признаки смешения базальтов и кислых расплавов верхнекорового магматического очага (или субвулканических тел от предшествующего кальдерообразующего этапа).

Сопоставление валового состава вулканических пород ВМБС и Карымского вулканического центра (КВЦ) [Гриб и др., 2009], показывает, что характер распределения породообразующих окислов в этих структурах близок (см. рис. 6, 7а). Основное различие заключается в более узком диапазоне составов пород ВМБС (49.7—75.1 мас. % против 46.3—76.1 мас. % в породах КВЦ) и их меньшей магнезиальности (8.1 против 11.1 мас. %). Отмечается и несколько пониженное содержание щелочей, TiO₂ и CaO в базальтах и андезибазальтах ВМБС (см. рис. 7а).

Микроэлементы. Концентрация литофильных, высокозарядных и редкоземельных элементов отрицательно коррелирует с содержанием MgO (см. рис. 76, табл. 2). На диаграммах также выделяются два тренда распределения элементов: первый, более пологий, в базальтах и андезибазальтах (от 7.5 до 2 мас. % MgO), где концентрации

Таблица 2. Состав пород вулканического массива Большой Семячик

Nº	1	2	3	4	5	6	7	8	9	10
№обр.	7-87Л	30-87л	109-85Л	80-88л	ЦС24-90	ЦС14а-90	ЦС21-90	ЦС29-90	19-90Л	103-85л
SiO ₂	49.36	57.28	56.98	73.07	74.14	61.86	62.78	69.22	66.84	60.58
TiO,	0.97	0.77	0.82	0.23	0.39	0.87	0.82	0.63	0.82	1.03
Al_2O_3	18.81	17.03	19.42	13.58	13.87	17.39	16.17	15.44	15.62	14.47
Fe O ₃	11.63	3.32	2.25	0.73	1.06	2.86	2.59	1.45	1.56	3.72
FeO		4.35	4.95	1.36	1.91	3.73	2.8	2.27	3.19	4.55
MnO	0.18	0.11	0.13	0.07	0.04	0.11	0.11	0.09	0.14	0.16
MgO	4.73	3.64	2.09	0.33	0.42	2.20	1.43	0.66	1.30	2.71
CaO	10.71	7.10	7.98	1.72	0.96	5.32	4.87	2.84	3.56	5.82
Na ₂ O	2.71	2.93	3.58	4.04	3.77	3.89	4.35	5.06	4.93	3.64
K,Ö	0.49	1.43	0.96	3.32	2.96	1.57	1.76	2.63	1.80	1.73
P ₂ O	0.16	0.17	0.18	0.05	0.04	0.19	0.20	0.13	0.18	0.26
LOÌ	0.34	1.73	0.59	1.20	0.24	0.37	1.85	0.29	0.29	0.68
Сумма	100.19	99.86	99.93	99.70	99.80	100.36	99.73	100.71	100.23	99.35
Sc	33	27	22	3	10	14	16	14	19	27
V	292	213	150	19	65	102	123	38	52	125
Co	31	26	14	2	5	7	9	3	5	10
Ni	28	29	5	2	2	8	10	2	3	3
Cu	96	66	34	9	41	22	30	7	13	32
Zn	69	73	59	19	22	46	52	56	188	52
Ga	16.6	12	21	12	15	17	16	17	18	17
Ge	1.3	1.2	1.4	1.5	1.2	1.4	1.2	1.6	1.7	1.2
Rb	6	24	13	53	57	17	37	35	33	31
Sr	420	309	362	124	155	277	242	189	259	277
Y	18	24	19	8	27	24	24	29	24	33
Zr	44	95	78	42	27	138	59	57	125	142
Nb	1.6	2.8	0.5	3	4.7	5	4.4	6.9	4.9	3
Мо	1.4	1.8	0.9	1.4	3.9	2	22.8	2	1.4	1.8
Sn	0.8	1.4	0.8	0.5	0.6	1.4	0.8	0.98	1.8	0.7
Sb	1.1	4.8	0.7	1	0.8		0.98	277	0.2	0.8
Cs	0.36	2.4	0.4	2.22	2.44	1.28	1.75	1.09	1.27	1.01
Ba	1.33	281	230	639	669	419	384	505	427	390
La	4.45	9.6	6.76	11.22	17.71	9.13	10.27	15.44	9.67	11.83
Ce	11.6/	24.06	16.68	19.38	38.67	20.59	23.44	34.51	22.58	29.35
Pr	1.75	3.44	2.4	1.99	5.1	3.09	3.21	4.81	2.86	4
Na	8.36	1.85	10.95	7.39	20.21	13.77	13.84	21.6	12.27	18.93
Sm En	2.55	4.04	2.85	1.33	4.36	3.66	3.88	5.4	3.15	4.67
Eu	0.9	1.1	0.98	0.16	0.74	1.1	1.24	1.18	1.19	1.63
Gđ	3	4.35	3.22	0.24	4.54	4.30	4.53	5.95	3.28	5.52
Ib D	0.5	0.71	0.56	0.24	0.78	0.73	0.75	1.03	0.59	0.92
Dy	3.21	4.	3.38	1.20	4.09	4.55	4.57	5.81	3.90	5.64
H0 Er	0.09	0.	0.75	0.27	0.99	0.97	0.95	1.19	0.87	1.21
EI Tm	1.94	2.55	2.10	0.81	2.89	2.8	2.38	0.49	2.01	0.54
T III Vh	0.5	0.8	0.33	0.15	0.42	0.43	0.38	0.48	0.4	0.54
Iu	0.21	2.5	2.11	0.98	2.33	0.12	2.41	0.42	2.08	0.51
Hf	1.27	0.9	0.52	1.44	0.38	2.45	1.74	1.74	1.72	2.37
Та	0.12	0.2	0.19	0.2	0.88	0.24	0.22	0.42	0.21	0.27
W	0.12	0.2	0.18	0.5	1.69	0.34	1.14	0.45	0.51	0.22
тı	0.02	0.31	0.27	0.84	0.08	0.78	0.24	0.45	0.32	0.55
Ph	2.02	4.41	2.00	1 20	5.00	5.02	5.12	4.74	7 40	1 74
Th	0.26	4.41	5.87	4.38	2.00	1.91	1 46	4.74	2.42	4.70
U	0.30	0.04	0.54	1.09	2.40	0.04	0.51	0.51	2.10	1.04
-	0.22	0.64	0.54	1.22	0.55	0.94	0.51	0.51	1.10	1.04

Габлица	2.	П	родолжение
	_		

32

N₂	11	12	13	14	15	16	17	18	19	20
№ обр.	ЦС34-90	5-85Л	97-84Л	ЦС40-90	ЦС53-84	ЦС13-87	ЦС5-87	ЦС58-87	ЦС2а-84	ЦС34а-87
SiO ₂	64.40	52.54	51.20	49.70	51.08	50.22	51.68	53.40	49.92	49.94
TiO ₂	0.90	0.87	0.58	0.71	0.69	0.73	0.76	0.84	0.78	0.64
Al ₂ O ₃	16.10	18.78	19.68	18.01	19.04	19.27	20.87	18.88	18.52	18.19
Fe ₂ O	3.64	3.92	4.07	2.58	2.99	4.22	4.25	6.54	3.55	5.65
FeO	2.92	6.13	5.49	7.61	7.49	6.24	4.45	5.68	6.49	4.24
MnO	0.11	0.17	0.17	0.10	0.15	0.16	0.11	0.06	0.14	0.17
MgO	1.50	4.48	4.74	7.50	5.12	4.16	3.06	2.56	4.80	5.79
CaO	4.68	9.87	9.91	11.60	10.60	10.55	9.16	8.64	9.58	10.85
Na ₂ O	3.71	2.51	2.42	1.82	2.45	2.10	2.25	2.55	3.44	1.83
K ₂ O	1.89	0.36	0.48	0.24	0.39	0.48	0.48	0.62	0.67	0.23
P ₂ O ₅	0.25	0.13	0.15	0.14	0.14	0.21	0.21 -	0.18	0.15	0.09
LOI	0.38	0.28	0.79	0.23	0.55	1.45	2.96	0.42	1.07	2.34
Сумма	100.48	100.04	99.68	100.24	100.69	99.79	100.24	100.37	99.11	99.96
Sc	28	29	34	38	42	38	37	35	41	40
V	94	283	330	289	290	334	334	280	349	298
Со	9	27	30	35	34	32	25	26	33	32
Ni	3	18	19	30	34	23	13	10	31	33
Cu	17	39	55	62	82	83	35	76	125	83
Zn	111	61	76	64	40	85	46	67	49	43
Ga	17.3	18.2	20.9	17.6	15.4	18.5	19.1	18	19	16
Ge	1.7	1.19	1.29	1.3	1.4	1.2	1.1	1.4	1.3	1.1
Rb	41	3	2	2	6	2	3.8	7	4	3
Sr	267	260	352	218	226	237	244	234	306	254
Y 7-	35	15	21	15	19	20	- 18	21	21	10
	42	45	- 52	41	43	42	27	40	40	30
Ma	3.5	0.94	1.1	0.95	1.09	0.85	0.85	0.9	1.08	0.8
Sn	1.2	0.6	0.8	0.6	1.5	1.0	1.05	0.8	1.0	0.9
Sh	0.2	0.0	0.7	0.0	0.7	0.8	0.8	0.7	0.9	0.0
Ce	1.67	0.09	0.15	0.1	0.0	0.23	0.5	0.42	0.8	0.7
Ra	472	0.09	0.15	81	122	0.25	101	113	100	70
la	16.41	2.85	4 31	28	4 09	2.68	2.71	3 53	441	34
Ce	41.19	7 37	11.69	7.9	10.49	7.43	7.49	9.79	11.62	8 88
Pr	5.64	1.12	1.73	1.22	1.5	1.18	1.19	1.49	1.78	1.29
Nd	23.96	5.86	8.42	5.93	7.2	6.34	5.87	7.35	8.64	6.24
Sm	5.86	1.96	2.43	1.89	2.17	2.24	1.77	2.32	2.44	1.83
Eu	1.7	0.72	0.9	0.69	0.84	0.88	0.86	0.88	0.89	0.69
Gd	6.21	2.46	3.13	2.36	2.75	3.03	2.4	3.13	3.13	2.37
ТЪ	1	0.45	0.53	0.4	0.48	0.53	0.42	0.56	0.55	0.41
Dy	6.24	2.83	3.58	2.69	3.38	3.6	2.76	3.65	3.52	2.81
Ho	1.29	0.61	0.78	0.58	0.73	0.76	0.61	0.82	0.78	0.61
Er	3.53	1.73	2.24	1.68	2.13	2.33	1.77	2.35	2.23	1.81
Tm	0.52	0.26	0.35	0.26	0.33	0.36	0.27	0.35	0.35	0.28
Yb	3.3	1.75	2.22	1.7	2.09	2.35	1.76	2.31	2.26	1.75
Lu	0.48	0.27	0.34	0.25	0.31	0.35	0.27	0.37	0.34	0.27
Hf	1.86	1.19	1.4	1.09	1.22	1.15	0.73	1.25	1.33	1
Та	0.34	0.09	0.1	0.08	0.09	0.08	0.08	0.09	0.1	0.07
W	0.59	0.23	0.23	0.3	0.49	0.67	0.22	0.2	0.76	0.19
TI	0.17	-	0.03	1 m	0.05		0.04	0.04	0.12	0.03
Pb	6.57	1.28	1.9	1.38	2.42	1.74	2.22	2.94	2.24	2.24
Th	2.2	0.26	0.34	0.26	0.58	0.34	0.39	0.45	0.49	0.45
0	0.68	0.14	0.17	0.15	0.27	0.16	0.18	0.24	0.25	0.25

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 2 2015

Таблица 2. Продолжение

Nº	21	22	23	24	25	26	27	28	29
№ обр.	ЦС58-84	ЦС34-87	ЦСІ4а-84	ЦС35а-87	E95-85	67-87Л	104-84Л	ЦС52-87	ЦС45-87
SiO ₂	50.55	53.41	48.22	53.64	53.66	55.96	59.10	66.26	60.68
TiO ₂	0.81	0.69	0.54	0.83	0.63	0.88	0.52	0.82	0.82
Al ₂ O ₃	17.98	17.56	17.94	19.78	18.24	18.77	17.13	15.31	16.92
Fe ₂ O	3.68	4.21	4.04	3.82	2.72	2.64	2.66	3.79	4.86
FeO	7.67	5.60	7.39	6.19	7.35	4.60	4.71	1.58	3.05
MnO	0.23	0.18	0.24	0.08	0.12	0.13	0.17	0.04	0.06
MgO	5.99	5.09	6.21	2.72	4.41	2.94	3.25	0.64	2.56
CaO	10.69	9.21	10.82	9.08	8.78	8.46	7.13	3.44	5.50
Na ₂ O	1.26	1.96	1.84	2.45	2.60	3.70	3.52	4.39	3.32
K,Ô	0.24	0.48	0.48	0.60	0.54	1.29	1.14	2.00	1.26
P_2O_5	0.24	0.12	0.17	0.18	0.17	0.27	0.15	0.25	0.17
LOI	0.49	1.45	2.00	0.26	0.33	0.74	0.47	1.03	1.14
Сумма	99.83	99.96	99.89	99.63	99.55	10038	99.95	99.55	100.34
Sc	45	38	34	45	37	21	22	12	36
V	397	298	363	327	325	194	180	35	243
Co	36	30	29	22	23	15	18	3	24
Ni	57	23	17	19	16	12	16	5	48
Cu	91	56	118	90	50	54	45	5	49
Zn	80	40	57	54	64	64	55	74	76
Ga	18.9	17.5	17.3	20.4	18.1	20.1	18.4	17.6	15.2
Ge	1.2	1.25	1.26	1.21	1.49	1.22	1.36	1.46	1.32
Rb	3	6	9	8	4	10	9	14	19
Sr	261	265	225	278	263	357	289	206	186
Y	16	21	21	24	20	17	20	24	20
Zr	40	46	60	66	42	87	103	172	101
Nb	0.98	1.14	121	1.23	0.87	2.36	2.38	4.2	2.24
Mo	1.08	1.02	1.78	1.19	1.02	1.86	1.79	1.87	2.88
Sn	0.89	0.6	0.67	0.64	0.61	1.12	1.13	1.56	1.38
Sb	-	0.48	0.95	0.75	0.49	- 1	S 73 9 (S	_	0.25
Cs	0.24	0.35	0.5	0.53	0.12	0.42	0.29	0.91	1.03
Ba	116	121	194	187	96	194	208	362	224
La	3.06	4.74	5.38	5.85	3.65	6.18	6.48	8.5	5.41
Ce	8.1	12.14	13.3	14.77	9.61	14.89	15.82	20.58	13.47
Pr	1.22	1.77	1.97	2.14	1.43	2.12	2.15	3.05	1.9
Nd	6.49	8.28	9.51	9.79	7.13	9.83	10.39	13.95	8.32
Sm	2.04	2.37	2.67	2.93	2.17	2.57	2.86	3.83	2.35
Eu	0.75	0.88	0.97	1.05	0.84	0.86	0.87	1.26	0.72
Gd	2.64	3.06	3.37	3.43	2.86	2.97	3.27	4.54	2.7
Tb	0.44	0.54	0.58	0.62	0.51	0.48	0.53	0.75	0.47
Dy	2.97	3.46	3.78	4.12	3.54	3.05	3.46	4.59	3.17
Но	0.64	0.77	0.83	0.86	0.8	0.66	0.78	0.99	0.7
Er	1.86	2.24	2.36	2.45	2.34	1.89	2.25	2.84	2.05
Tm	0.29	0.35	0.36	0.37	0.35	0.29	0.34	0.43	0.32
Yb	1.77	2.23	2.21	2.37	2.32	1.86	2.21	2.7	2.03
Lu	0.26	0.34	0.34	0.36	0.35	0.29	0.34	0.44	0.31
Hf	1.15	1.27	1.6	1.67	1.18	2.32	2.62	4.47	2.63
Та	0.11	0.1	0.09	0.11	0.08	0.17	0.17	0.26	0.19
W	0.22	-0.25	0.81	0.3	0.3	1.01	0.89	0.44	1.43
Tl		0.06	0.04	0.03	0.03	- 1		_	0.29
Pb	1.78	3.99	2.8	2.9	2.08	2.72	2.83	5.38	4.25
Th	0.44	0.51	0.71	0.77	0.37	0.88	0.91	1.62	1.29
U	0.22	0.28	0.39	0.42	0.23	0.46	0.5	0.89	0.78

Таблица 2. Окончание

N₂	30	31	32	33	34	35	36	37	38
№ обр.	ЦС56-87	ЦС15-87	ЦС35а-84	ЦС6-84	ЦС26а-84	ЦС12-84	ЦС26-87	ЦС45в-84	ЦС28-87
SiO ₂	60.38	62.28	64.94	58.94	69.03	69.94	57.42	57.22	58.70
TiO ₂	0.70	0.68	0.45	0.47	0.48	0.26	0.71	0.40	0.62
Al ₂ Ô ₁	15.98	15.71	15.62	17.32	15.00	14.82	17.42	17.48	17.32
Fe ₂ O	4.57	3.13	3.06	5.10	1.42	1.83	5.16	2.80	2.10
FeO	4.89	3.38	3.28	2.30	2.59	1.44	3.59	4.91	5.32
MnO	0.08	0.06	0.09	0.15	0.08	0.05	0.14	0.12	0.13
MgO	2.88	2.40	1.31	3.37	0.88	1.20	3.56	4.31	3.33
CaO	6.48	5.62	4.56	6.45	3.69	3.34	7.68	7.95	7.76
Na ₂ O	2.92	2.92	3.66	2.48	4.1	3.79	2.70	2.57	2.98
K ₂ Ô	1.08	1.20	1.67	1.00	1.84	1.84	0.91	0.87	1.20
P.0.	0.14	0.17	0.21	0.19	0.1	0.07	0.17	0.22	0.15
LOI	0.37	2.08	1.04	1.79	0.71	0.92	0.86	0.83	0.20
Сумма	100.47	100.08	99.89	99.56	99.92	99.50	100.32	99.68	99.81
Sc	30	33	24	30	17	11	31	29	23
V	236	232	52	204	65	45	246	205	187
Co	23	20	8	18	6	5	24	18	18
Ni	11	13	21	12	3	2	16	15	9
Cu	34	39	21	44	17	16	57	48	22
Zn	61	106	74	54	33	38	81	85	47
Ga	17	15.9	21.3	15.6	17.2	14	15.8	16.4	13.8
Ge	1.42	1.63	1.7	1.45	1.29	1.45	1.44	1.36	1.15
Rb	15	24	34	17	37	28	13	19	11
Sr	201	208	288	232	230	145	202	258	167
Y	18	24	40	16	40	19	17	23	16
Zr	79	101	127	81	250	97	65	114	71
Nb	1.63	2.18	4.14	1.65	3.58	3.28	1.32	3	1.31
Mo	1.37	2.38	2.09	1.62	2.74	1.02	1.8	1.7	1.51
Sn	0.88	1.08	1.67	0.92	0.69	1.45	0.86	1.11	0.77
Sb	-	0.21			1.25	-	0.66	0.16	1222
Cs	0.58	1.27	0.98	1.02	1.94	1.25	0.78	0.48	0.79
Ba	235	285	484	254	531	361	174	238	182
La	4.44	6.95	16.8	5.77	15.52	9.95	3.66	8.27	4.24
Ce	11.18	17.51	38.71	14.7	38.23	21.76	9.18	20.69	10.24
Pr	1.54	2.41	5.51	2.1	4.93	2.6	1.4	2.95	1.43
Nd	7.36	11.09	24.7	9.39	22.46	11.09	6.59	12.94	6.64
Sm	2.12	3.01	6.19	2.39	5.42	2.91	2.12	3.37	1.97
Eu	0.67	0.88	1.35	0.59	1.28	0.55	0.79	0.98	0.57
Gd	2.72	3.29	7.2	2.74	6.04	3.02	2.82	3.48	2.43
Td	0.46	0.59	1.17	0.49	1.04	0.54	0.51	0.59	0.43
Dy	3.09	3.91	7.13	3.01	6.65	3.5	3.36	3.8	2.76
Ho	0.69	0.86	1.49	0.66	1.52	0.79	0.72	0.82	0.62
Er	2.11	2.55	4.26	1.96	4.42	2.31	2.04	2.36	1.83
Tm	0.33	0.39	0.63	0.31	0.66	0.38	0.31	0.36	0.29
Yb	2.1	2.51	4.04	1.99	4.38	2.47	2.07	2.27	1.81
Lu	0.32	0.38	0.6	0.31	0.66	0.39	0.31	0.36	0.29
Hf	2.09	3.24	3.51	2.2	5.37	2.97	1.75	3.04	1.94
Та	0.13	0.16	0.29	0.13	0.24	0.24	0.1	0.21	0.11
W	0.28	0.89	1.04	0.56	0.79	0.36	0.82	0.68	0.33
TI	-	0.20	-		0.23		0.13	0.09	
Pb	3.09	4.97	6.57	2.75	7.29	4.33	3.27	4.41	2.46
Th	1.11	1.61	2.37	1.21	2.71	2.08	0.85	1.38	0.93
U	0.58	1.01	1.03	0.63	1.53	0.95	0.45	0.86	0.48

Примечание. Докальдерный этап: 1–3 – базальт, андезибазальт (1 – влк. Двугорбый, 2 - влк. Борт, 3 – хребет Промежуточный). Кальдерообразующий этап: 4–7 – пемзовые туфы и игнимбриты первой фазы; 8–9 – лавоподобные игнимбриты второй фазы; 10-11 – игнимбриты третьей фазы. Посткальдерный этап: базальты, андезибазальты: 12–14 – влк. Зубчатка; 15–16 – алк. Попкова; 17–19 – влк. Проблематичный, 20–23 – влк. Центральный Семячик, 24 влк. Плоско-Кругленький, 25 – включение базальта в риодацитах купола Кулакова; 26–28 – андезибазальты, андезиты и дациты влк. Западный Бараний; 29 – андезиты влк. Восточный Бараний; 30-31 андезиты влк. Проблематичный; 32–36 –экструзивные купола верхнеплейстоцен-голоценового возраста, влк. Центральный Семячик: Купол со щитом (32), Черный (33), Корона (34), Скалистый (35), Полукупол (36); 37 – лавовый поток риодацитового состава, западный склон влк. Попкова, 38 – риодацит, купол Кулакова.

Рис. 7. Распределение содержаний породообразующих окислов (а) и микроэлементов и отношения La/Yb (б) в вулканических породах BMEC в зависимости от содержания MgO. Условные обозначения см. на рис. 6. Полем показан ареал пород Карымского вулканического центра.

микроэлементов меняются незначительно (например, Ва от 81 до 122 г/т, Th от 0.26 до 0.58 г/т, La от 2.68 до 4.41 г/т), и второй, в области среднекислых вулканитов. Эти два тренда перекрывают друг друга в интервале 2-4 мас. % MgO. Начиная с 4 до 0.33-0.42 мас. % МдО содержания крупноионных литофильных микроэлементов и легких РЗЭ резко возрастают (например, Ва от 133 до 669 г/т, Th от 1.12 до 3.09 г/т, La от 4.45 до 17.71). Высокозарядные элементы (например, Nb, Nd, Zr и Y) ведут себя иначе. При снижении магнезиальности от 4 до 2 мас. % происходит возрастание их концентраций, а при дальнейшем снижении падение, что может быть следствием фракционирования циркона и рудных минералов. Содержания когерентных (Ni, Co) элементов и умеренно когерентного Sc прямо коррелируют с MgO, что может свидетельствовать об участии шпинелидов, оливина и клинопироксена в процессах фракционирования расплава. Распределение V имеет близкий характер с распределением FeO и

TiO₂, что определяется участием его в процессе отсадки титаномагпетита.

Если в распределении петрогенных окислов в ВМБС нет особых различий (в интервале до 8 мас. % SiO₂) по отношению к этому показателю в Карымском вулканическом центре, то сопоставление распределения редких и РЗ элементов демонстрируют существенные отклонения. Посткальдерные базальты и андезибазальты ВМБС отличаются более низкими концентрациями крупнокатионных литофильных элементов (Ва 81 — 194 г/т против 94-272 г/т, Sr 218-357 г/т против 385-519 г/т), высокозарядных (Nb 0.83-1.13 г/т против 1.5—2.5 г/т, Zr 52—87 г/т против 44—95 г/т) и редкоземельных элементов (La 2.68—5.85 г/т против 3.07— 9.46 г/т, Nd 5.86-8.64 г/т против 6.82-13.57 г/т) по отношению к их содержанию в аналогичных породах КВЦ (до 8 мас. % MgO). В о же время концентрация V в базальтах и андезибазальтах с MgO в пределах 4-7 мас. % выше, чем в аналогичных породах КВЦ (283-397 г/т против 262-320 г/т).

Рис. 7. Окончание.

Спектры распределения редкоземельных элементов, нормированных к хондриту, в базальтах ВМБС слабо фракционированы и отличаются субгоризонтальным профилем (рис. 8а). Спектры средних и тяжелых РЗЭ деплетированы относительно N-MORB. Для наиболее примитивных базальтов вулкана Зубчатка характерны минимальные содержания крупноионных элементов и низкая (30.35 г/т) сумма РЗЭ; она возрастает в базальтах вулканов Центральный Семячик и Проблематичный, а наибольшие значения характерны для докальдерных лав (41.58 г/т), развитых к западу от кальдеры. Отмечается слабо выраженная деплетация легкими (La, Ce) РЗЭ. Отношение La/Yb в докальдерных базальтах составляет 1.53, в посткальдерных варьирует в пределах 0.77-1.3 (против 1.3—3.51 в породах КВЦ), т.е. посткальдерные базальты являются более примитивными. Евро-

пиевый минимум в базальтах отсутствует. В низкомагнезиальных базальтах первичные концентрации элементов изменяются в процессе фракционирования кристаллов. Так, например, в дайке лейкократовых базальтов на вулкане Проблематичный (обр. ЦС 5-87) отмечен европиевый максимум, который связан с обогащением (флотация) расплава плагиоклазом. В андезибазальтах-андезитах концентрация редкоземельных элементов возрастает, спектры приобретают умеренно фракционированный характер вследствие увеличения концентрации как легких, так и тяжелых РЗЭ, начинает формироваться европиевый и титановый минимумы. Eu* изменяется в пределах 0.93-0.68. Среди андезибазальтов также наиболее обогащенными являются докальдерные лавы, а среди андезитов — игнимбриты заключительной фазы первого этапа кальдерообразующих

Рис. 8. Распределение редких и редкоземельных элементов в породах ВМБС. и спектры редкоземельных элементов, нормированных к хондриту; б — спайдерграммы микроэлементов, нормированные к примитивной мантии (Sun, McDonough, 1985). Тонкие сплошные линии —лавы посткальдерного этапа; точечный пунктир — пирокластические отложения кальдерообразующего этапа; штрих-пунктир — докальдерные лавы. Номера спектров соответствуют номерам образцов в таблице № 2.

извержений. В кислых вулканитах степень фракционирования РЗЭ возрастает. Характер распределения микроэлементов отличается в пемзовых туфах и лавах. При этом в высококремнистых пемзовых туфах и лавах, содержащих роговую обманку и биотит, наблюдается наиболее высокая степень истощения промежуточных (Dy, Ho, Er) РЗЭ но отношению к легким и тяжелым, а также наиболее глубокие Eu (Eu* 0.34) и Ti-минимумы. D риодацитовых пемзовых туфах и лавах, в которых отсутствуют водосодержащие минералы, степень деплетирования промежуточных РЗЭ меньше.

Характер конфигураций спектров концентраций микроэлементов, нормированных к примитивной мантии, на спайдердиаграммах(см. рис. 8б), обычный для островодужных пород. Проявлены отчетливые Nb—Ta — минимумы и максимумы подвижные крупноионных литофильных элементов (Ba, K, Pb, Sr), имеющих сродство с флюидом. В базальтах и низкокремнистых андезибазальтах концентрации высокозарядных элементов (Nd, Zr, Hf) деплетированы относительно N-MORB, но уже в андезитах отмечается их рост. На спайдерграммах кислых пород отмечается различный характер распределения высокозарядных элементов в пирокластических отложениях и лавах. В первых проявлены глубокие минимумы в концентрациях Zr и Hf, в то время как для эффузивных аналогов дацитового и риодацитового состава (лавовые потоки на вулканах Попкова и Западном Бараньем и экструзия Кулакова) — максимумы.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Магматическая деятельность вулканического массива Большой Семячик, начиная со среднего плейстоцена, развивалась, как и на других кальдерах Восточного вулканического пояса, следуя определенным тектоно-магматическим циклам [Леонов, Гриб, 2004). Разнообразие вулканических пород определяется многими факторами, главными из которых являются фракционная кристаллизация, смешение различных по составу магм, взаимодействие расплавов магматических очагов с вмещающими породами, а также состав мантийного источника расплавов.

Кристаллизационная дифференциация. Базальты, андезибазальты и низкокремнистые андезиты докальдерных и посткальдерных вулканических построек, образующие толеитовый тренд эволюции, свидетельствуют о существовании промежуточного магматического очага базальтового расплава, продукты которого фиксируются на протяжении длительного этапа формирования

структуры. Докальдерные базальты (расположенные в начале известково-шелочного тренда), с фракционированием которых связано формирование верхнекорового магматического очага средне-кислого состава, в значительной степени эволюционированы (Mg^{*} = 0.44—0.30), концентрация MgO в опробованных образцах не превышала 5 мас/ % (см. рис. 7а). Посткальдерные базальты, развитые к востоку от кальдеры, представлены более примитивными высокоглиноземистыми базальтами (Mg, = 0.45 - 0.42, MgO = 4.3 - 8.1 мас. %), которые, по-видимому, в свою очередь, образовались в результате фракционирования первичных мантийных магм. Характер распределения породообразующих окислов и редких элементов (см. рис. 7) указывает на значительную роль фракционирования минералов в процессе кристаллизации расплавов. Из анализа минерального состава вкрапленников в посткальдерных базальтах и твердофазных включений в них, ликвидусными фазами родоначального расплава являлся минеральный парагенезис $P1_{80-9^2}$ + Cpx_{70-7^5} + $O1_{68-7^4}$ + Opx_{68-77} , а состав расплава, вероятно, соответствовал умеренно магнезиальным базальтам (7-8 мас. % MgO. 48.2—52.5 мас. % SiO₂). Характер распределения породообразующих окислов (MgO, FeO, CaO, $Al_{2}O_{2}$) и микроэлементов (например, Ni, Co, V, Sc, Sr) свидетельствует о фракционировании на начальных этапах эволюции базальтового расплава оливина, клинопироксена, магнезиально-железистых окислов, и, в меньшей степени, плагиоклаза (европиевый минимум в базальтах отсутствует). Начиная с андезибазальтов, появляется Еи-минимум, который увеличивается по мере роста кремнекислотности пород и указывает на возрастание роли плагиоклаза в процессах фракционирования. Для вулканических пород средне-кислого состава предполагается участие пироксенов, титаномагнетита, роговой обманки, которые приводят к резкому падению концентраций железа, кальция, глинозема, титана, фосфора в расплаве; одновременно резко возрастает содержание кремнезема, вплоть до риолитов, и щелочности, что свойственно вулканическим породам известково-щелочного ряда. Большую роль в процессах эволюции расплавов на поздних стадиях играли акцессорные минералы. Глубокие минимумы концентраций Zr и Hf в высококремнистых пемзовых туфах (см. рис. 7, 8) могут свидетельствовать о фракционировании циркона, в то время как для эффузивных аналогов дацитового и риодацитового состава (лавовые потоки на вулканах Попкова и Западном Бараньем, а также экструзии Кулакова и Опальная) отмечается накопление циркония. Согласно [Watson, Harrison, 1983] уровень насыщения расплавов цирконием определяется температурой и составом расплава. Низкие концентрации Y и Yb в высококремнистых пемзовых туфах в сочетании с наиболее высокой сте-

пенью деплетации промежуточных (Dy, Ho, Er) РЗЭ по отношению к легким и тяжелым, контролируются главным образом роговой обманкой и такими акцессорными минералами, как сфен, циркон и апатит [Балашов, 1976; Интерпретация..., 2001].

Смешение расплавов. Результаты геологических наблюдений и минералого-геохимического изучения вулканических пород ВМБС указывают на их гибридную природу, которая определяется взаимодействием разноглубинных магматических очагов, характерных для кальдерных структур [Леонов, Гриб, 2004). Инъекции базальтов в основание верхнекорового очага происходили как непосредственно при эксплозивных извержениях, так и в межпароксизмальные стадии. Первые отмечаются в основном в пирокластических отложениях и обычно провоцируют крупные эксплозивные извержения [Sparks, Sigurdsson, 1977]. Так в игнимбритах андезитового состава заключительного, третьего этапа формирования кальдеры, отмечаются округлые, развальцованные включения шлаков андезибазальтового состава с фенокристаллами оливина и высококальциевого плагиоклаза, которые наблюдаются и в виде отдельных вкрапленников. В пемзах пирокластического потока андезидацитового состава на вулкане Проблематичный, встречаются прослои вспененных шлаков, отвечающие по составу андезибазальтам и низкокремнистым андезитам. В лавах (и пирокластике) отмечаются в основном признаки смешения расплавов, происходившие при незначительных периодических инъекциях базальтов, имеющих собственные кристаллические фазы, в основание верхнекорового магматического очага. Они выражаются в присутствии закаленных мелкозернистых, тонкопористых включений базальтового состава, неравновесных минеральных ассоциаций (высококальциевый плагиоклаз, пироксен и оливин повышенной магнезиальности), образующих вкрапленники с обратной и сложной зональностью, возникающей при изменении состава расплава в зоне кристаллизации. Эти признаки особенно характерны для андезитов, дацитов и риодацитов верхнеплейстоценовых куполов и лавовых потоков (см. рис. 3, 4). Неравновесными минералами в андезитах являются также фенокристаллы кварца, подвергшиеся резорбции. Высокомагнезиальные фазы (O1 + Cpx) в глиноземистых базальтах вулкана Попкова отражают процессы смешения расплавов и кристаллических фаз, отвечающих разным стадиям фракционирования первичных магм, и свидетельствуют о периодическом поступлении высокотемпературных расплавов в основание верхнекорового магматического очага из более глубоких уровней земной коры. В андезитах смешение контрастных по составу расплавов подтверждается и геохимическими данными, а именно, значительными колебаниямиконцентраций как породообразующих окислов, так и микроэлементов (см. рис. 7, 8).

О процессах контаминации расплавов, участвующих в формировании вулканического массива Большой Семячик, можно судить по отношениям некогерентных элементов с близки ми коэффициентами распределения минерал-расплав, например (La/Yb)_N, в зависимости от содержания MgO [Pearce, Parkinson, 1993]. При процессах фракционирования они практически не меняются. В посткальдерных базальтах отношение (La/Yb), варырует в узком диапазоне 0.7-1.23 (см. рис. 7б). Более высокие концентрации несовместимых элементов и (La/Yb)_N отношения (1.53-2.57) характерны для докальдерных базальтов и андезибазальтов, при фракционировании которых образовались кислые расплавы, связанные с образованием кальдеры. В риолитах кварц-биотитовых пемзовых туфов, которыми начинался процесс кальдерообразования в ВМБС, это отношение резко возрастает, достигая 7.74. Это, на наш взгляд, свидетельствует о контаминации расплава, на уровне формирования промежуточных магматических очагов.

Мантийный источник расплавов. Высокие положительные значения e(T) (+9.4) в магнезиальных базальтах массива Большой Семячик предполагают связь первичных расплавов с деплетированным мантийным источником типа N MORB [Фор, 1989]. Базальты обеднены относительно N-MORB высокозарядными, средними и тяжелыми редкоземельными элементами (см. рис. 8), что, наряду с низкими отношениями Nb/Ta (8.9-12.6), может свидетельствовать о неоднократном плавлении исходного субстрата мантийного клина (хондритовое отношение Nb/Ta@ 17) [Green et al., 1989]. Высокая концентрация флюидмобильных элементов (Cs, Rb, Ba, К, Pb, Sr) в базальтах ВМБС значительно превышает их содержание в базальтах N-MORB. что говорит об участии в процессах магмогенерации флюидов, отделяемых от субдуцируемой океанической плиты [Avers, 1998; Pearce, 1983]. Субпаралельные спектры распределения микроэлементов в вулканических породах разного состава свидетельствуют о едином магматическом источнике.

Концептуальная модель эволюции питающей магматической системы ВМБС основана на результатах изучения геолого-структурных особенностей района, эволюции состава пород и минералов, с использованием эмпирических и экспериментальных данных по физико-химическим параметрам кристаллизации расплавов [Арискин, Бармина, 2000 и др.; Scailet, Evans, 1999; Риtirka, 2008, et al.]. Широкое развитие на докальдерном этапе структуры андезибазальтов, андезитов (с незначительным количеством дацитов) дает основание предполагать формирование в верхней части земной коры дифференцированного магматического очага, который проявил себя 0.56 млн. лет назад [Леонов и др., 2008; Bindeman et al., 2010] катастрофическим эксплозивным извержением пирокластического материала (рис. 9а).

Согласно клинопироксеновому геобарометру [Putirka, 2008] кристаллизация вкрапленников клинопироксена в докальдерных андезибальтах происходила при общем давлении 2-2.2 кбар, что соответствует уровню (6-7 км) верхней коры. Изменение состава пирокластических отложений от риолитов до андезитов в процессе извержения указывает на зональное строение магматического очага по составу, температуре и содержанию воды на период, предшествующий извержению [Леонов, Гриб, 2004. Присутствие биотита и роговой обманки в пирокластических отложениях начальной фазы кальдерообразующего извержения является показателем повышенной обводненности расплава в апикальной части верхнекорового магматического очага. Прямые определения H₂O в расплавных включениях в фенокристаллах кварца из подобных по составу пемзовых туфов кальдеры Половинка (Карымский вулканический центр) варьируют в пределах 3.4-4.9 мас. % [Наумов и др., 2008]. Согласно экспериментальным данным для стабильности роговой обманки в магмах среднекислого состава требуется 4-5 мас. % H₂O [Gardneret al., 1995]. Близость концентраций воды в стеклах расплавных включений в кварце и экспериментальных данных свидетельствует о стабильности роговой обманки в кислом расплаве вапикали магматического очага. Пары железотитанистых окислов во вкрапленниках и твердофазных включений в пироксене из пирокластических отложений | Гриб, Леонов, 1992] также дают представление о равновесных условиях кристаллизации магмы в верхнекоровом магматическом очаге на предэруптивном этапе, которые контролируются температурой, давлением и фугитивностью кислорода [Andersen, Lindsley, 1988]. Температура возрастала от 820-835°C в риолитах и риодацитах с вкрапленниками кварца, биотита и роговой обманки в отложениях первых пирокластических потоков до 850°С в последующих риодацитах с кварцем, но без водосодержащих минералов. Активность кислорода (fO₂) в наиболее кислых продуктах первой фазы была на 1-2 порядка выше буфера NNO. Наиболее низкие температуры (~800°С при fO₂ — 12.8) получены по соотношению магнезиальности и железистости в биотите [Wones, Eugster, 1985]. В андезидацитах и

Рис. 9. Концептуальная модель строения и эволюции магматической системы вулканического массива Большой Се-мячик.

а — докальдерный этап; б — кальдерообразующий этап, в — посткальдерный этап, формирование вулканов внутри кальдеры и к востоку от нее; г — посткальдерный этап, верхнеплейстоцен-голоценовые купола и связанные с ними потоки.

1 — докальдерные постройки и внутрикальдерный вулкан Западный Бараний; 2 — пирокластические отложения, связанные с образованием кальдеры Большой Семячик; 3 — вулканические постройки, расположенные к востоку от кальдеры; 4 — посткальдерные купола и связанные с ними потоки; 5 — разломы, ограничивающие кальдеру (*a*), и внутрикальдерные озерные отложения (б); 6—10 состав расплавов в системе разноглубинных взаимосвязанных магматических очагов: 6 — риолитовый, риодацитовый, 7 — дацитовый, андезитовый, 8 — андезитобазальтовый, 9 — базальтовый клинопироксен-оливин-ортопироксеновым минеральным парагенезисом, 10 — базальтовый клинопироксен-оливиновым минеральным парагенезисом. Стрелка показывает на подток более глубинной высокотемпературной магмы в основание расположенного выше промежуточного магматического очага. Расположение магматических очагов в разрезе основаны на статистических определениях давления по клинопироксеновому [Putirka, 2008] и Al-роговообманковому [Scailet, Evans, 1999] геобарометрам.

андезитах, завершающих первую фазу игнимбритообразования, температура кристаллизации Mt - IL пар составляла 870—860°С. В процессе начальной фазы кальдерообразующего извержения произошло осушение расплава и во время последующих крупнообъемных извержений пирокластики активность кислорода оставалась на уровне буфера NNO, а температура пирокластических отложений изменялась от 850—830°С в риодацитовых двупироксеновых игнимбритах до 935—910°С в игнимбритах андезитового состава третьей, последней, фазы.

Общее давление в магматическом очаге ориентировочноможно оценить по эмпирической положительной корреляции содержания Al₂O₃ в рогоных обманках от давления и температуры [Scailet, Evans, 1999 и др.]. Общее содержание глинозема в амфиболах пемзовых туфов ВМБС варьирует в пределах 5.5-6.1 мас. % (см. рис. 5, табл. 1), что соответствует общему давлению при кристаллизации на предэруптивном этапе 1.4 - 1.5 кбар или глубине верхней кромки магматической камеры порядка 5-6 км [Леонов, Гриб, 2004]. По мере извержения пирокластических потоков второй и третьей фаз формирования кальдеры, верхняя кромка очага перемещалась на более высокие уровни. Эти предположения основаны на оценке общего давления с помощью клинопироксенового геобарометра [Putirka, 2008]. В риодацитовых игнимбритах давление составило 1 – 1.2 кбар, возрастая к пирокластике андезитового состава до 1.2 - 1.3 кбар, что соответствует глубинам 3-4 км. Температура кристаллизации клинопироксена в средне-кислых расплавах 867- 1023°С, что выше, чем по Mt-IL-геотермобарометру ввиду более раннего выделения клинопироксена из расплава.

Повышение основности каждого последующею пирокластического потока кальдеры Большой Семячик, вплоть до андезибазальтов, с возрастанием степени их неоднородности, свидетельствует о том, что в процессе формирования кальдеры кислая магма в объеме очага, участвующий и извержении, была замещена поступающими снизу базальтовыми расплавами (см. рис. 96). Новый, посткальдерный, этап развития ВМБС начался с излияния базальтов внутри кальдеры и к востоку от неё, вофронтальной зоне вулканического пояса (см. рис. 9в). Преобладающая минеральная ассоциация базальтов (Р1₇₈₋₉₂ + Срх₇₀₋₇₅ + + ОІ₆₈₋₇₇ + Орх₆₈₋₇₇) соответствует габброидным интрузивным сериям и может рассматриваться как производная промежуточного корового магматического очага. Согласно клинопироксеновому геобарометру [Putirka, 2008] эта ассоциация могла кристаллизоваться при общем давлении 3.3 - 5.6 кбар, что соответствует глубинам 10-16 км (средняя кора) и температуре порядка 1175—1118°С. Присутствие неравновесных вкрапленников оливина и клинопироксена повышенной магнезиальности (Срх₇₈₋₈₃ + Ol₈₀₋₈₃) в базальтах вулкана Попкова свидетельствует о периодическом поступлении в нижнюю часть промежуточной камеры, расположенной на средних уровнях земной коры, высокотемпературных расплавов из более глубоких зон этого очага или из более глубокой магматической камеры. Температура таких расплавов могла составлять 1225-1315°С при общем давлении 6.3-6.4 кбар или глубине 18-20 км, т.е. на уровне нижней коры.

В дальнейшем, базальты, пополнившие верхнекоровый очаг, формировали вулканические постройки к востоку от кальдеры; взаимодействовали с остаточными кислыми расплавами; образовавшиеся при ЭТОМ гибридные расплавы участвовали в становлении большого количества экструзивных куполов верхнеплейстоценового возраста (см. рис. 9г). Лавы куполов в большом количестве содержат ситовидные анортитовые ядра в фенокристаллах плагиоклаза, корродированные кристаллы кварца и пироксены с варьирующей магнезиальностью. Продуктом фракционирования базальтов является внутри кальдерный вулкан Западный Бараний, состав которого изменялся от базальтов до риодацитов. Для субафировых андезитов этого вулкана характерны незональные или слабо зональные вкрапленники, что свидетельствует о равновесных условиях их кристаллизации. Клинопироксены риодацитов экструзии Кулакова, содержащих роговую обманку, кристаллизовались при температуре 905-878°С и давлении 0.9-1.2 кбар [Putirka, 2008], что близко к значениям (1 – 1.2 кбар), определенным по содержанию A1₂O₃(5.4 5.7 мас. %) в роговой обманке [Scailet, Evans, 1999 и др.] (примерная глубина 3-4 км). В риодацитах лавового потока на западном склоне вулкана Попкова, с безводной минеральной ассоциацией, температуры были несколько выше (950-914°С), а давление составляло 0.3-0.4 кбар, что соответствует глубине 1-2 км. Это могло быть связано как с неровностями кровли магматического очага, так и существованием близ поверхностного субвулканического тела у восточной границы кальдеры. Наиболее молодые голоценовые купола андезибазальтового состава в восточной части структуры дренировали, очевидно, более глубокие зоны магматической системы; давление кристаллизации Срх составляет 1.8-2.2 кбар, температура 1000-1076°С; они гибридизированы в меньшей степени, чем андезиты куполов верхнеплейстоценового возраста.

ЗАКЛЮЧЕНИЕ

Формирование вулканического массива Большой Семячик происходило в три этапа: докальдерный, кальдерообразующий и посткальдерный. Состав пород варьирует от умеренно магнезиальных базальтов (48.86-51.87 мас. % SiO₂, 7.4-8.3 мас. % MgO) до риолитов (75.1 мас. % SiO₂, 7.4-8.3 мас. % MgO) до риолитов (75.1 мас. % SiO₂, 3.86 мас. % K₂O). Изменение состава пирокластических отложений от риолитов до низкокремнистых андезитов является показателем зональности магматической камеры. После извержения игнимбритов, верхнекоровый очаг пополнился базальтами, основной объем которых извергался за пределами кальдеры во фронтальной зоне вулканического пояса. Низкая магнезиальность высокоглиноземистых базальтов ($Mg^* = 0.45 - 0.42$) ВМБС свидетельствует о значительной степени эволюционированности, обусловленной фракционированием их из более примитивных первичных мантийных магм.

Отмеченные закономерности в распределении редких и редкоземельных элементов в породах различной кремнекислотности, усиление Еи-минимума от андезибазальтов к риолитам, предполагают главную роль кристаллизационной дифференциации в формировании вулканических пород массива Большой Семячик, при незначительном участии процессов гибридизма.

Низкое содержание РЗЭ в магнезиальных базальтах ВМБС, обеднение их высокозарядными элементами предполагают связь первичных расплавов с деплетированным мантийным источником N-MORB. Высокая концентрация в них флюидмобильных крупноионных элементов (Cs, Rb, Ba, K, Pb, Sr) свидетельствует об участии в процессах магмогенерации флюидов, отделяемых от субдуцируемой океанической плиты.

Авторы выражают благодарность В.М. Чубарову и Т.М. Философовой за обеспечение качественного микрозондового анализа и рецензентам за внимательное прочтение статьи и ценные замечания.

Работа выполнена при финансовой поддержке проекта РФФИ № 11-05-00602-а и проекта ДВО РАН№ 12-III-А-08-171.

СПИСОК ЛИТЕРАТУРЫ

Арискин А.А., Бармина Г.С. Моделирование фазовых равновесий при кристаллизации базальтовых магм. М.: Наука, 2000. 362 с.

Балашов Ю.А. Геохимия редкоземельных элементов. М.: Наука, 1976.266 с.

Влодавец В.И. О некоторых семячинских туфолавах и их происхождении // Изв. АН СССР. Сер. геол. 1953. № 3. С. 96-106.

Влодавец В.И. О происхождении пород, обычно называемых туфолавами и игнимбритами // Тр. Лаб. вулканологии АН СССР. 1957. Вып. 14. С. 3-16.

Влодавец В.И. Вулканы и вулканические образования Семячинского района // Тр. Лаб. вулканологии АН СССР. 1958. Вып. 15. 197 с.

Гриб Е.Н. Пироксены эффузивно-эксплозивного комплекса Узон-Гейзерной вулкано-тектонической депрессии (Восточная Камчатка) // Вулканология и сейсмология. 1997. № 4. С. 19-35.

Гриб Е.И., Леонов В.Л. Игнимбриты кальдеры Большой Семячик (Камчатка): состав, строение, условия образования // Вулканология и сейсмология. 1992. № 5/6. С. 34-50.

Гриб Е.Н и др. Геохимия вулканических пород Карымского вулканического центра // Вулканология и сейсмология. 2009. № 6. С. 1-23. Интерпретация геохимических данных / Под ред. Склярова Е.В.. М.: ИНТЕРМ. ИНЖИНИР, 2001. 288 с.

Леонов В.Л., Биндеман И.И., Рогозин АН. Новые данные по Ar-Ar датированию игнимбритов Камчатки // Матер, конференции, посвященной Дню вулканолога 27—29 марта, г. Петропавловск-Камчатский. Петропавловск-Камчатский: ИВиС ДВО РАН, 2008, С. 187-197.

Леонов В.Л., Гриб Е.Н. Вулкан Большой Семячик // Действующие вулканы Камчатки. В 2-х томах. Т. 2. М.: Наука, 1991. С. 144-157.

Леонов В.Л., Гриб Е.Н. Кальдеры и игнимбриты Узон-Семячикского района, Камчатка: новые данные по результатам изучения разрезов Плато Широкое // Вулканология и сейсмология. 1998. № 3. С. 41—59.

Леонов В.Л., Гриб Е.Н. Структурные позиции и вулканизм четвертичных кальдер Камчатки. Владивосток: Дальнаука, 2004. 186 с.

Леонов В.Л., Гриб Е.Н. Вулканический массив Большой Семячик, Камчатка: геологическое строение и структурные позиции // Вулканология и сейсмология. 2014. № I.C. 9-13.

Леонов В.Л., Гриб Е.Н., Карташева Л.А. Расчленение игнимбритов и оценка объемов магмы, выброшенной при игнимбритообразующих извержениях на Восточной Камчатке // Вулканология и сейсмология. 2000. № 5. С. 3-18.

Наумов В.Б., Толстых М.Л., Гриб Е.Н. идр. Химический состав, летучие компоненты и элементы примеси расплавов Карымского вулканического центра (Камчат-ка) и вулкана Головнина(о. Кунашир) поданным изучения включений в минералах // Петрология. 2008. Т. 16. № 1.С. 3-20.

Перепелов А. В., Пузанков М.Ю., Иванов А. В. и др. Неогеновые базаниты Западной Камчатки — минералогогеохимические особенности и геодинамическая позиция // Петрология. 2007. Т. 15. № 5. С. 524-546.

Шеимович В.С., Брайцева О.А., Краевая ТС. Четвертичные игнимбриты Семячинского района на Камчатке// Кислый вулканизм. Новосибирск: Наука, 1973. С. 110—120.

Фор Г. Основы изотопной геохимии. М.: Мир, 1989. 598 с.

Andersen D.J., Lindsley D.H. Internally consistent solution models for Fe-Mg-Ti oxides // American Mineralogist. 1988. V.73. P. 714-726.

Avers J. Trace element modeling of aqueous fluid-peridotite interaction in the mantle wedge of subduction zones // Contrib. to Mineral, and Petrol. 1998. V. 132. P. 390-404.

Bindeman I.N., Leonov V.L., Izbekov P.E. et at. Large-volume silicic volcanism in Kamchatka: Ar-Ar, U-Pb ages, isotopic, and geochemical characteristics of major pre-Holocene caldera-forming eruptions // J. Volcanol. Geotherm. Res. 2010. V. 189. № 1/2. P. 57-80.

Gardner J. E., Carey S., Rutherford M.J., Sigurdsson H. Petrologic diversity in Mount St. Helens dacites during the last 4.000 years: implications for magma mixing // Contributions to Mineralogy and Petrology. 1995. V. 19. P. 224-238. *Gill J.B.* Orogenic andesites and plate tectonics. Berlin, Heidelberg: Spribger-Verlag, 1981. 390 p.

Green T.H., Sie S.H., Ryan C.G., Cousens DR. // Proton microprobe-determined partitioning of Nd, Ta, Zr, Sr and Y between garnet, clinopyroxene and basaltic magma at

high pressure and temperature // Chemical Geology. 1989. *Putirka K*. Termometers and Barometers for volcanic Systems // Minerals, Inclusions and Volcanic Processes

Kersting A. B, Arculus R.J., Gust D.A. Lithospheric contributions to arc magmatism: isotope variations along strike in volcanoes of Honshu, Japan // Science. 1996. V. 272. P.1464 - 1468

Le Bas M.J., Le Mairte R.W., Streckeisen A., Zanettin B. Chemical classification of volcanic rocks based on the total alkali-silica diagram //J. Petrol. 1986. V. 27. P. 745-750.

Miyashiro A. Volcanic rock series in island arcs and active continental margins// Amer.J. Sci. 1974. № 4. P. 321-355.

Pearce J.A. Role of the sub-continental litosphere in magma genesis at active continental margins / Eds. Hawkesworth C.J., Norry M.J. Continental basalts and mantle xenoliths; papers prepared for a UK Volcanic Studies Group meeting at the University of Leicester. Nantwich: Shiva Publ., 1983. P. 230–249.

Pearce J.A., Parkinson I.J. Trace element model for mantle meiting: application to volcanic arc petrogenesis // Magmatic processes and Plate Tectonics. Geol. Soc. Special Pablic. 1993. № 76. P. 373-403.

ttirka K. Termometers and Barometers for volcanic Systems // Minerals, Inclusions and Volcanic Processes, Reviews in Mineralogy and Geochemistry / Eds Putirka K., Teplev F. 2008. V 69. P. 61 – 120.

Scailet B., Evans B. W. The 15 June 1991 eruption of Maunt Pinatubo. I. Phase equilibria and pre-emption P-T-fH₂O conditionofthedacitemagma//J. Petrol. 1999. V.40. № 3. P. 381-411.

Sparks SR - Sigurdsson H. Magma mixing: a mechanism for triggering acid explosive eruption // Nature. 1977.
V. 267. P. 315–318.

Sun S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes // Magmatism in the Ocean Basins / Eds Saunders A.D., Norry M.J. Geology Society London. Spec. Publ.1989. V 42 - P. 313-345.

Watson E.B., Harrison T.M. Zircon saturation revisited: temperature and composition effect in a variety of magma types//Earth. Planet. Sci. Lett. 1983. V. 64. № 2. P. 295-305.

Wones DR., Eugster H.P. Stability of biotite: experiment, theory and application//Amer. Mineral. 1965. V. 50. \mathbb{N} 10. P. 1228-1272.

The Bol'shoi Semyachik Volcanic Massif, Kamchatka: Composition of the Rocks and Minerals, and Petrogenesis

E. N. Grib^a, V. L. Leonov^a, and Perepelov^b

Institute of Volcanology and Seismology, Far East Branch, Russian Academy of Sciences, Petropavlovsk-Kamchatskii, bul'var Piipa 9, 683006 Russia

e-mail:gen@kscnet.ru

Vinogradov Institute of Geochemistry, Siberian Branch, Russian Academy of Sciences, ul. Favorskogo 1A. Irkutsk, 664303 Russia

e-mail:region@igc.ikr.ru

Received March 4, 2014

Abstract—This paper is the first attempt at a detailed description of petrographic, mineralogic, and gcochemical features for the rock complex that makes the Bol'shoi Semvachik volcanic massif(BSVM). The massifwas formed in three phases: the pre-caldera phase, the caldera-generating phase, and the post-caldera phase. The rocks vary in composition from moderately magnesian basalts (48.86-51.87 wt %, SiO₂, 7.4-8.3 wt % MgO) to rhyolites (75.12 wt % SiO, 3.86 wt % K,O). The pre-caldera phase was dominated by basaltic andesites and andesites. The composition of the pyroclastic deposits varies from rhyolite to andesite, thus providing evidence of a zonal structure of the upper crustal magma chamber beneath the caldera. The upper crustal chamber received more basalts after the eruption of ignimbrites. Practically all BSVM rocks are of hybrid derivation, as suggested by non-equilibrium mineral associations that are present in the rocks and by a complex zonality of phenocrysts. The variation in the major oxides and trace elements in volcanic rocks indicate a leading part played by fractional crystallization in the origin of the entire range of rocks in the area. The BSVM magnesian basalts have low concentrations of REEs and are depleted in high-charge elements. thus suggesting a relationship between the primary melts and a depleted mantle source of the N-MORB type. High concentrations of fluid-mobile large-ion elements (Cs, Rb, Ba, K, Pb, and Sr) in these shows that the magma generation involved fluids that separated from the subducted oceanic plate. We describe a conceptual model of the associated magmatic system.