ДИНАМИЧЕСКИЕ И ФИЗИКО-ХИМИЧЕСКИЕ МОДЕЛИ МАГМАТИЧЕСКИХ ПРОЦЕССОВ

ИЗДАТЕЛЬСТВО «НАУКА» НОВОСИБИРСК 1983 г.

В. Н. АНДРЕЕВ, В. И. СОТНИКОВ, О. Н. ВОЛЫНЕЦ, Г. Б. ФЛЕРОВ

РАСПРЕДЕЛЕНИЕ Мо, Cu, Zn, Pb В ПОРОДАХ БОЛЬШОГО ТРЕЩИННОГО ТОЛБАЧИНСКОГО ИЗВЕРЖЕНИЯ 1975-1976 гг.

Известен обширный материал по распределению главных и многих редких элементов в базальтах Большого трещинного Толбачинского извержения* [3, 4, 9, 14]. Однако поведение отдельных элементов в ходе извержения детально анализировалось лишь для некоторых из них (см., например, [9]). Предлагаемое сообщение восполняет этот пробел для некоторых халькофильных элементов (Mo, Cu, Zn, Pb).

Хотя общие закономерности распределения Cu, Pb, Zn в породах извержения уже были установлены ранее на основе изучения коллекции из 108 образцов, проанализированных в лаборатории физико-химических методов исследования ДВГИ ДВНЦ АН СССР [3], детальное рассмотрение вариаций перечисленных элементов в ходе извержения и анализ их распределения в различных фациях твердых вулканических продуктов извержения (лава, бомба, пепел) стали возможны только после получения дополнительных данных по коллекции из 198 образцов, проанализированных в спектральной лаборатории ИГиГ СО АН СССР, в которых определено также содержание Мо. Обе коллекции анализировались с помощью количественного спектрального метода аналитиками Т. В. Сверкуновой (ДВГИ) и А. А. Алабиной (ИГиГ).

Сравнение концентраций Сu, Pb и Zn в породах извержения по данным лабораторий ДВГИ и ИГиГ показывает хорошую сходимость для Сu и Zn и значительные отличия для Pb, хотя тенденция изменений содержаний и этого элемента остается одинаковой (табл. 1). В связи с этим при дальдейшем обсуждении данные по Cu и Zn, полученные в разных лабораториях, были объединены, а для Pb использованы только данные лаборатории ИГиГ, так как коллекция, проанализированная в этой лаборатории, более представительна.

Динамика извержения и состав лав. Прежде чем перейти к изложению фактов, следует, по-видимому, напомнить о динамике извержения, хотя ход его описан в ряде публикаций [15, 16 и др.].

Начальный период извержения Северного прорыва БТТИ (с 6 по 23 июля 1975 г.) характеризуется непрерывным выносом огромного объема раскаленного пирокластического материала в газовой струе [16]. С 23 июля в режиме эксплозивной деятельности извержения появились паузы, 27 июля были отмечены первые порции лавы, а 29 июля и 2 августа произошло излияние первых лавовых потоков первого конуса. 8 августа первый конус перестал действовать, но уже 9 августа началось образование второго конуса, 17 августа — третьего, 22—23 августа — четвертого конуса и лавовых котлов. Третий и четвертый конусы, а также лавовые котлы действовали в течение всего нескольких дней, однако второй конус — до конца извержения Северного прорыва. Начиная с образования второго конуса извержение характеризовалось пульсирующим режимом эксплозивной деятельности и обильным излиянием лавы из всех эруптивных центров. Тем не менее индекс эксплозивности оставался высоким, а в целом для Северного прорыва он составил 83-87%.

С самого начала образования Южного прорыва БТТИ (18.IX.75 г.) извержение приобрело существенно эффузивный характер и характеризовалось излиянием жидких лав [16]. Эксплозивная деятельность, относительно активная в первые недели прорыва, быстро ослабела. Средний расход лавы постепенно снижался вплоть до начала апреля. 6 апреля 1976 г. началось резкое усиление эксплозивной деятельности, а 9 апре-* В дальнейшем в тексте оно именуется БТТИ.

Таблица

Содержание халькофильных элементов в базальтах БТТИ, г/т

Ē	Химический тип лав		Cu			Zn		Ad		Mo
Прорыв	(дата извержения)	Ι	Π	Ш	Ι	Π	III	Ι	Π	Ι
Северный	Преобладающий (7. VI—	137(43)	145(28)	140(71)	61(43)	75(27)	(02)69	6,8(43)	2,7(28)	1,1(43)
	10. IX. 75 r.)	82—180	100-220	82—220	30—120	42—91	30-120	3—10	05	0,91,7
	Промежуточный	122(12)	140(10)	131(22)	51(12)	52(10)	51,5(22)	5,6(12)	3,2(10)	1,2(12)
	(11—15. IX. 75 r.)	90—180	110-190	90—190	4070	28—110	28110	3—8	06	0,9-1,6
Южный	Промежуточный	153(15)	170(11)	160(26)	50(15)	58(10)	53(25)	<u>6,5(15)</u>	4,4(11)	1,3(15)
	(18—24. IX. 75 r.)	130-200	200-240	110240	40-110	36—79	36-110	4—9	2—7	1, 1-1, 6
	Промежуточный	165(18)	155(10)	161(28)	49(17)	45(10)	47,5(27)	7,7(17)	3,5(10)	1,6(17)
	(25. IX—30. XI. 75 r.)	120-220	110—190	110-220	4060	36—63	36—63	6—10	2—6	1, 3-2, 0
	Преобладающий	211(117)	175(50)	200(167)	44(111)	59(50)	49(161)	7,8(111)	5.9(50)	1,5(111)
	(1.XII.75—10.XII.76 rr.)	110330	110-290	110-330	30—90	30—100	30—100	2,5—14	0—12	0,9—2,0
П – обл Вариации	римечание. I — пода вединенные данные. В каждой з содержаний элемента в от	інным спектраль 1 графе в числи глельных образі	ной лаборатори теле — средне цах.	и ИГиГ СО АН е содержание	I СССР, II — элемента и в съ	по данным лаби кобках — коли	ратории физикс чество анализо	о-химических ме в для подсчет	стодов ДВГИ Д а среднего, в	ЗНЦ АН СССР знаменателе —

ля — и эффузивной. В дальнейшем режим извержения Южного прорыва имел циклический характер, когда периоды некоторого усиления или ослабления эксплозивной и эффузивной деятельности чередовались. Однако резкого усиления активности извержения, какое было во время апрельской вспышки, больше не наблюдалось.

Как отмечалось ранее, твердые вулканические продукты извержения представлены базальтами; по особенностям вещественного состава типы базальтов Северного и Южного прорывов суразличаются щественно [3, 4]. Лавы Северного прорыва по сравнению с лавами Южного имеют более высокие содержания Mg, Ca, Cr, Ni, Co, Zn, V. Базальты Южного прорыва, напротив, обогащены Al, Ti, P, K, Na, Pb, Ba, Sr, La, F, B и другими литофильными элементами. Полярные по составу типы базальтов объединяются павами промежуточного состава, излившимися в течение весьма ограниченного отрезка времени в конце деятельности Северного и начале Южного прорывов (11 24. ІХ. 75 г.).

Результаты наблюдений. распределение Рассмотрим Мо, Си, Zn и Pb в базальтах Северного и Южного прорывов, а также особенности поведения этих элементов в ходе извержения.

Средние содержания Мо и Pb в базальтах извержения (см. табл. 1) близки к кларку в основных породах по А. П. Виноградову [2] — 1,4 г/т Мо и 8 г/т Pb, тогда как содержания Zn заметно ниже г/т), кларка (130 а содержан Си — выше кларка (100 г/т). По сравнению с соответствующими средними геохимическими типами базальтов Камчатки и Курил, а также по сравнению с преобладаю-

Средние	содержания	халькофильных	элементов	в	различных	типах	базальтов	Камчатки
			и Курил,	Γ	/ T			

Элемент	Ι	II	III	Ι	Π	III	IV	Π	III	IV	Ι	III	III
Элемент	1	2	3	4	5	6	7	8	9	10	11	12	13
Cu Zn Pb Mo <i>n</i>	92 87 3,2 3,1 34	100 92 5,5 3,2 17	108 114 4,8 3,3 6	93 78 2,4 1,0 69	110 95 5 3,2 110	148 97 18	80 95 4 2,4 29	100 105 7,4 1,7 51	246 110 5,3 2,3 10	94 100 7,4 2,4 20	87 89 — 16		185 58,5 6,3 1,45 15

Примечание. n — количество анализов для подсчета среднего. I — III — глиноземистые базальты: I — низкокалиевые, II — с умеренным содержанием К, III — высококалиевые; IV — магнезиальные базальты умеренной щелочности. I—3 — Курильские острова; 4 — 13 — Камчатка: 4 — 7 — данные в целом для региона, 8 — 10 — для зоны Центральной Камчатской депрессии, 11, 12 — для зоны Южной Камчатки, 13 — для Толбачинской зоны шлаковых конусов. I—3 — по данным Л. Л. Леоновой [6]; 4, 5 и 7—10 — по данным Л. Л. Леоновой и др. [7]; 11, 12 — по данным В. Д. Пампуры и др. [11]; 6 — по данным Л. Л. Леоновой и др. [1978] и В. Д. Пампуры и др. [11]; 13 — по данным авторов.

щими в пределах этого региона глиноземистыми базальтами умеренной щелочности (табл. 2) лавы БТТИ характеризуются более низкими концентрациями Zn, Mo (в 1,5—2,0 раза) и более высокими Pb и Cu (в 1,5 — 2,0 раза). От различных типов базальтов Ключевской группы вулканов (куда входит и Толбачинская зона шлаковых конусов, где и произошло извержение) лавы БТТИ также отличаются пониженным содержанием Mo [12] и Zn [7]. Однако лавы Южного прорыва по содержанию Cu, а Северного — по содержанию Pb сходны с соответствующими по щелочности типами базальтов этой группы вулканов (см. табл. 2). Таким образом, главными отличительными особенностями базальтов БТТИ в отношении анализированных элементов являются пониженные концентрации Mo и Zn.

Средние содержания Мо, Cu, Zn и Pb в преобладающих типах базальтов Северного и Южного прорывов отличаются существенно (см. табл. 1), что особенно наглядно показано на гистограммах (рис. 1). При этом концентрации Мо, Cu и Pb выше в базальтах Южного прорыва, а Zn — Ceверного. Содержания Мо, Cu, Pb и Zn в базальтах промежуточного состава, проявленных в последние дни деятельности Северного прорыва и в первые дни деятельности Южного прорыва, закономерно занимают промежуточное положение между величинами концентраций этих элементов в преобладающих типах лав каждого прорыва.

Вместе с тем выравнивание концентраций Мо, Рb и Zn в лавах Южного прорыва идет быстрее, чем выравнивание концентраций Cu, а также K, Rb и ряда других редких элементов (см. [3]), и уже через неделю после начала деятельности Южного прорыва («промежуточные лавы начала извержения» в табл. 1) содержания этих элементов достигают в среднем величин, характерных для преобладающей массы лав Южного прорыва.

Изложенные данные касаются средних содержаний изученных элементов в определенных группах пород, однако в ходе извержения при относительно стабильных содержаниях главных петрогенных элементов в течение основного периода деятельности как Северного, так и Южного прорывов в концентрациях Mo, Cu, Zn и Pb наблюдались значительные колебания.

Молибден. На графике вариаций содержаний Мов ходе извержения (рис. 2) видно, что породы начального («чисто» эксплозивного) этапа деятельности Северного прорыва характеризовались самыми низкими концентрациями этого элемента — около 1 г/т. В дальнейшем вплоть до конца активности Северного прорыва нижний предел концентраций Мов базальтах оставался на этом уровне, а с появлением первых пауз в режиме эксплозивной деятельности извержения и образованием лавовых потоков верхний предел концентраций Мовырос до 1,25 г/т. С момента появления первых лавовых потоков несколько изменился петрографиче-

Рис. 1. Гистограмма распределения Мо, Сu, Pb, Zn в породах БТТИ. Северный прорыв: І — высокомагнезиальные базальты умеренной щелочности (преобладающий тип), II — промежуточные базальты; Южный прорыв: III — промежуточные базальты первых дней извержения (18—25.IX), IV — промежуточные базальты (26.IX — 30. XI), V — субщелочные глиноземистые базальты (преобладающий тип).

ский состав вулканитов [1], а также увеличились вариации концентраций целого ряда редких элементов (в частности, редких щелочей) при стабильном содержании главных петрогенных элементов. В дальнейшем содержание Мо в вулканитах Северного прорыва постепенно увеличивалось, а в самом конце деятельности Северного прорыва (11—15.IX.75 г.) при излиянии лав промежуточного состава верхний предел концентраций Мо резко вырос — до 1,6 г/т. Следует отметить некоторое обогащение лав молибденом во время образования третьего конуса и работы лавовых котлов (18—24. VIII.75 г.).

В первую неделю деятельности Южного прорыва среднее содержание Мо в вулканитах и разброс концентраций этого элемента в отдельных образцах оставались такими же, как и в конечный этап деятельности Северного прорыва (см. рис. 2). В дальнейшем в ходе излияния лав промежуточного типа содержание Мо в породах постепенно возрастало вплоть до начала декабря 1975 г., когда произошла окончательная стабилизация состава базальтов Южного прорыва в отношении главных петрогенных элементов. С декабря 1975 г. по апрель 1976 г. средние концентрации Мо в вулканитах в общем постепенно снижались, достигнув в середине апреля во время резкого усиления активности и расходов лавы («апрельская активизация») минимальных значений (1,3 г/т) при максимальных вариациях содержаний. Сразу же после апрельской активизации содержания Мо в вулканитах снова резко возросли до 1,7—1,8 г/т (уровня, который был характерен для начала декабря 1975 г.), а затем, с некоторыми флукту-

Рис. 2. Вариации содержаний Мо, Сu, Zn, Pb в ходе Большого трещинного Толбачинского извержения 1975—1976 гг. Точкой указано содержание этих элементов (среднее за десять дней), чертой — разброс микроэлементов за этот период.

ациями, уменьшались вплоть до конца извержения. Небольшие снижения содержаний Мо в лавах отмечались в июле и сентябре 1976 г. (так же как и в январе), когда интенсивность эксплозивной деятельности несколько возрастала.

Медь. Распределение Си в базальтах Северного прорыва неравномерно (см. рис. 2). Наиболее высоки средние значения содержаний Си при минимальной их дисперсии на начальном (эксплозивном) этапе извержения. В дальнейшем с момента образования первых лавовых потоков средние содержания Си несколько уменьшились, а дисперсии возросли. Наиболее низкая концентрация Си в вулканитах наблюдалась в период образования третьего конуса (18.VII.75 г.), а максимальная дисперсия содержаний — в период деятельности лавовых котлов (22 — 24. VII. 75 г.).

В базальтах Южного прорыва вариации содержаний Сu, значительные в течение всего извержения, достигли максимума во время апрельской вспышки эксплозивной активности. При этом средние содержания Cu в вулканитах в общем постепенно увеличивались от начала деятельности Южного прорыва до апреля 1976 г., а затем (в мае) резко уменьшились и испытывали лишь слабые колебания (180—210 г/т) вплоть до конца извержения.

Цинк. В базальтах Северного прорыва средние концентрации Zn и дисперсии их минимальны в начальный (эксплозивный) этап извержения

Прорыв	Элемент	Лава	Бомба	Пепел	Средние
Южный	Мо	<u>1,47(68)</u> 1,0—2,0	<u>1,53(21)</u> 1,2—1,8	<u>1,53(23)</u> 1,1—1,8	1,51(112)
	Pb	<u>8,0(68)</u> 2 5—14	<u>8,4(21)</u> 6—12	<u>7,3(23)</u> 5—9	8,00(112)
	Zn	44,3(68) 30-80	$\frac{41,0(21)}{30-65}$	$\frac{41,3(23)}{30-60}$	43,1(112)
	Cu	$\frac{213(71)}{110-330}$	$\frac{216(23)}{130-330}$	$\frac{205(23)}{140-270}$	212(117)
Северный	Мо	<u>1,03(9)</u> 0.8—1.2	<u>1,17(39)</u> 1,0-2,5		1,14(48)
	Pb	$\frac{4,3(9)}{2}$	<u>6,5(40)</u>		6,1(49)
	Zn	<u>47,8(9)</u>	$\frac{62,3(40)}{20,120}$		59,6(49)
	Cu	<u>30</u> —65 <u>116(14)</u> 80180	30-120 <u>145(34)</u> 00-180		135(48)
		80—180	90—180		

Средние содержания халькофильных элементов в различных по фациальным принадлежностям продуктах извержения (бомба, лава, пепел), г/т

(см. рис. 2). С переходом режима извержения в эффузивно-эксплозивную стадию значения средних начали непрерывно возрастать и только в самом конце деятельности Северного прорыва с появлением базальтов промежуточного состава снова уменьшились. Эффузивно-эксплозивная стадия извержения характеризовалась также резким увеличением вариаций содержаний Zn в отдельных образцах, причем максимальные вариации наблюдались в период образования третьего конуса.

В базальтах Южного прорыва средние концентрации Zn изменялись слабо: они лишь незначительно убывали в ходе излияния лав промежуточного состава до декабря 1975 г., затем слегка увеличивались в январе 1976 г. и далее монотонно убывали до октября 1976 г., когда начинали снова несколько увеличиваться вплоть до конца деятельности Южного прорыва. Каких-либо отчетливых вариаций в концентрациях Zn в связи с изменением режима извержения не наблюдается.

С в и н е ц. Вариации содержаний Рb в базальтах Северного прорыва сходны с таковыми для Сu: максимальные концентрации Pb наблюдались в начальный (эксплозивный) этап извержения (8 г/т), с переходом к эффузивно-эксплозивной стадии они начали постепенно уменьшаться, достигнув минимума (5,5 г/т) в наиболее активную стадию извержения Северной группы конусов — деятельности второго, третьего конусов и лавовых котлов (9—22.VIII.75 г.). В лавах Южного прорыва содержания Pb оставались практически постоянными и лишь во время апрельской и сентябрьской 1976 г. вспышек эксплозивной активности заметно повышались (см. рис. 2).

С целью выяснения влияния фациальных условий образований твердых вулканических продуктов на уровень концентрации Cu, Mo, Pb и Zn подсчитаны средние содержания указанных элементов отдельно для лав, бомб и пеплов каждого прорыва. Результаты, сведенные в табл. 3, показывают, что разница в концентрациях Cu, Mo, Pb и Zn в лавах, бомбах и пеплах Южного прорыва незначительна, однако пеплы Северного прорыва отличаются от бомб и лав более низкими концентрациями этих элементов. Это различие может быть связано со значительно более интенсивной эксплозивной активностью при извержении Северной группы конусов.

Рис. 3. Соотношение концентраций Мо, Си, Zn, Pb в синхронно отобранных образцах лав, бомб и пеплов БТТИ.

Однако полученные различия нельзя уверенно считать надежными, так как концентрации халькофильных элементов заметно изменялись в ходе извержения. Правильнее сравнивать концентрации этих элементов в синхронно (т. е. в течение одного дня) отобранных образцах. Как видно на рис. 3, для Мо, Zn и Pb действительно наблюдается заметное обогащение лав по сравнению с бомбами и пеплами, а для Мо, кроме того, и обогащение бомб относительно пеплов. И только концентрации Cu в различных по фациальной принадлежности продуктах извержения статистически не различаются. Эти наблюдения указывают, по-видимому; на высокую летучесть Mo, Zn, Pb (и значительно меньшую летучесть Cu) при слабой сорбции их на поверхности пепловых частиц. Содержание халькофильных элементов в базальтах на различном удалении от истока лавы (от 0,1 до 3,0 км) существенно не меняется (табл. 4).

В четырех разрезах, сделанных на лавовых потоках Южного прорыва (табл. 5), видна тенденция обеднения верхней корки потока Mo, Zn и Pb. Цинк накапливается в более низких зонах лавовых потоков, более высокие содержания Mo и Pb наблюдаются в кровле потока (под коркой).

Таблица 4

Содержание	халькофил	іьных эле	ементов в	базальта	х на ря	азличном	удалении	0Т	истока
лавового п	отока (все	образцы	отобраны	из лав,	изливц	иихся в	феврале 1	976 г	.), г/т

Я- ИС- КМ			Элем	лент		98- ИС- ЮО- КМ			Элем	мент	
Рассто ние от тока п тока, 1	Номер образца	Cu	Мо	Pb	Zn	Рассто ние от тока п тока, 1	Номер образца	Cu	Мо	Pb	Zn
0,1	A-648	250	1,5	6	35	1,0	A-649	250	1,6	6	45
0,2	A-647	320	1,6	6	40	1,5	A-621	270	1,7	7	50
0,3	A-640	250	1,5	7	40	2,0	A-627	300	1,5	8	40
0,3	A-639	220	1,6	8	50	2,5	A-652	200	1,7	10	40
0,4	A-618	180	1,4	8	40	3,0	A-653	180	1,5	6	38

	Номер разре- за	Корка потока	Кров- ля (под кор- кой)	Сред- няя часть	Подо- шва	Элемент	Номер разре- за	Корка потока	Кров- ля (под кор- кой)	Сред- няя часть	Подо- шва
Cu	Ι	240	300	220	210	Pb	Ι	7	9	10	8
	П	220	250	180	-	-	П	9	8	8	-
	III	180	150	220			III	7	8	2,5	
	IV	250	220	200			IV	6	7	5	
Мо	Ι	1,3	1,4	1,2	1,5	Zn	Ι	45	50	50	70
	II	1,2	1,6	1,4	,		II	50	60	50	
	III	1,5	1,6	1,6			III	50	60	80	
	IV	1,4	1,5	1,1			IV	55	60	70	
При	тмечан	ние	В разре	езе I и	номера (образнов лл	я корки	— A	-642 кі	овли –	– A-645

Содержание халькофильных элементов в разрезах лавовых потоков, г/т

средней части — A-644, подошвы — A-643; в разрезе II — соответственно — 6095, 6095/1, 6095/2; в разрезе III — A-663, А-662, А-661; в разрезе IV — 6059, 6059/1, 6059/2.

Содержание Си не имеет тенденции накопления в какой-либо зоне разреза лавового потока.

Концентрации Мо для пород извержения обнаруживают в общем довольно отчетливую прямую корреляцию с содержаниями К и F (рис. 4). Для меди такая корреляция несколько более слабая, а для Zn и Pb отсутствует вовсе. Следует заметить, однако, что даже для Мо, если рассматривать данные для каждого прорыва отдельно, зависимости ни от содержания К, ни от F не наблюдается.

Обсуждение результатов. Изложенный материал показывает, концентрации Mo, Cu, Zn и Pb в базальтах БТТИ обнаруживают отчетливую связь с их валовым химическим составом. Содержания Mo, Cu и Pb заметно более высокие, а Zn — низкие в субщелочных глиноземистых базальтах (Южный прорыв) по сравнению с магнезиальными базальтами умеренной щелочности (Северный прорыв). Концентрации анализированных элементов в базальтах промежуточного состава также промежуточные, что не противоречит гипотезе об образовании этих разностей за счет смешения расплавов, соответствующих по составу преобладающей массе пород каждого прорыва [3].

По классификации Д. М. Шоу [17], Рb и Мо относятся к фельсифильным, а Си и Zn к фемафильным элементам. Первые обычно ассоциируют с породами, обогащенными полевыми шпатами и кварцем, вторые — с породами, обогащенными железисто-магнезиальными минералами. Кроме того, установлено, что Рb кристаллохимически связан с K, а Cu и Zn с Мд и Fe [13]. Указанные различия в свойствах анализированных элементов объясняют природу повышенных концентрации Pb и Mo в лавах Южного прорыва, обогащенных полевошпатовым компонентом и калием, а Zn — в лавах Северного прорыва, отличающихся меланократовостью и высоким содержанием магния, тогда как геохимическое поведение Си кажется аномальным. Необычность распределения Си в базальтах БТТИ подчеркивается данными по другим регионам, в частности Исландии [5] и океаническим островам [18], где установлено, что щелочные базальты по сравнению с толеитовыми заметно обеднены Си.

Известно, однако, что Си обладает высоким химическим сродством к сере. Судя по данным И. А. Меняйлова с соавторами [8], магматические газы и конденсаты газов Южного прорыва по сравнению с таковыми Северного были заметно обогащены S. Возможно, что сходная специфика в отношении содержания S была характерна и для соответствующих расплавов, что и может объяснить аномальность распределения Си. Следу-

Корреляция концентраций Pb — K, Zn — K, Mo — K, Cu — K (a) и Pb — F, Puc 4.

Zn — F, Mo — F, Cu — F (б) в базальтах БТТИ. Базальты Северного прорыва: 1 — высокомагнезиальные, 2 — промежуточные; базальты Южного прорыва: 3 — субщелочные глиноземистые, 4 — промежуточные.

ет заметить, что петрогеохимические аналоги базальтов Южного прорыва — субщелочные глиноземистые («мегаплагиофировые») базальты, широко развитые в фундаменте Ключевского дола и в Толбачинской ареальной зоне, по данным [7], также обогащены Си (см. табл. 2).

Особенности распределения Си в породах БТТИ могут, по-видимому, также служить доводом против гипотезы кристаллизационной дифференциации как механизма, обусловившего образование базальтов разного типа из единого магматического источника: отсадка меланократовой кристаллической фазы должна вызвать обеднение остаточного расплава (под которым подразумеваются лавы Южного прорыва) медью, тогда как в действительности наблюдается обратная картина.

В периоды извержения преобладающих масс каждого прорыва, когда содержания главных петрогенных элементов оставались стабильными. концентрации изученных элементов испытывали заметные колебания. достаточно четко увязывающиеся с динамикой вулканических событий. При этом поведение Си и Рь было прямо противоположно поведению Мо и Zn. Так, этап наиболее активной эксплозивной активности Северного прорыва (первые две недели его деятельности) был отмечен максимальными концентрациями Си и Рb и минимальными Мо и Zn. Сходная картина в отношении Cu, Pb и Мо наблюдалась во время апрельской активизации на Южном прорыве (хотя вариаций в содержании Zn в это время не отмечено). На Северном прорыве переход от эксплозивной стадии извержения к эффузивно-эксплозивной сопровождался не только уменьшением кон-центраций Си и Рb и увеличением концентраций Мо и Zn, но и заметным возрастанием дисперсии содержаний всех изученных элементов. Высокие дисперсии содержаний Мо, Си и Рb отмечены и во время апрельской вспышки эксплозивной активности на Южном прорыве. Все эти наблюдения приводят к мысли, что распределение изученных элементов в твердых вулканических продуктах во многом обусловлено взаимодействием расплав — летучие компоненты и переходом некоторого количества изученных компонентов в газовую фазу.

Наблюдения над вариациями концентраций Mo, Cu, Zn и Pb в синхронно отобранных образцах лав, бомб и пеплов подтверждают это предположение. Действительно, обогащение Мо, Zn, Pb образцов лав по сравнению с образцами бомб и пеплов (и бомб по сравнению с пеплами Мо) предполагает, что последние (особенно пеплы) потеряли часть изученных металлов вместе с газом при извержении. В то же время статистическое равенство концентраций Си в вулканических породах разной фациальной принадлежности позволяет думать, что для Си этот процесс менее вероятен. Сказанное находит подтверждение в данных И. А. Меняйлова с соавторами [8], которые на основе изучения металлической нагрузки конденсатов магматических газов показали, что Pb и Zn по способности миграций из расплава в газовую фазу относятся к «подвижным» элементам (в газовую фазу переходит n % элемента от содержания его в расплаве), тогда как Cu — к «слабоподвижным» элементам (выносится только n·10⁻¹%). Более высокая способность по сравнению с Си к переносу в парогазовой фазе была подтверждена также в опытах В. П. Пилипенко и В. В. Пономарева [13] по взаимодействию высокотемпературной паровоздушной смеси с лавами и шлаками Толбачинского извержения. По особенностям распределения элементов между газовой фазой и поверхностью пепловых частиц Си, Zn и Pb, согласно И. А. Меняйлову и др. [8], попадают в группу элементов, «остающихся в первой фазе», т. е. характеризуются слабой сорбцией на поверхности пепловых частиц. По данным этих авторов, на пеплах осаждается лишь 12% Си, 4% Zn и 1% Pb от их количества в газах. При этом И. А. Меняйлов и его соавторы полагают, что халькофильные элементы переносятся в газах в форме хлоридов и что наблюдаемый эффект обеспечивается достаточно высокой упругостью паров хлоридов Си, Zn и Рь при атмосферных условиях. К сожалению, они не анализировали содержание Мо в конденсатах, но наши наблюдения позволяют полагать, что этот элемент не менее высоколетуч, чем Pb и Zn.

- 1. Андреев В. Н. Петрографические особенности базальтов Северного прорыва Боль-шого трещинного Толбачинского извержения 1975—1976 гг. Вулканология и сейсмология, 1979, № 2, с. 72—76.
- 2. Виноградов А. П. Среднее содержание химических элементов в главных типах изверженных горных пород земной коры. — Геохимия, 1962, № 7, с. 555—571.
- Волынец О. Н., Флеров Г. Б., Андреев В. Н. и др. Петро-геохимические особенно-сти пород Большого трещинного Толбачинского извержения 1975—1976 гг. в свя-зи с вопросами петрогенезиса. В кн.: Геологические и геофизические данные о Большом трещинном Толбачинском извержении 1975—1976 гг. М.: Наука, 1978, с. 86—105.
- 4. Волынец О. Н., Флеров Г. Б., Хренов А. П., Ермаков В. А. Петрология вулканических пород трещинного Толбачинского извержения 1975 г. — Докл. АН СССР, 1976, т. 228, № 6, с. 1419-1422. 5. Исландия и Срединно-океанический хребет. Геохимия/ Герасимовский В. И.,

- Исландия и Срединно-океанический хребет. Геохимия/ Герасимовский В. И., Поляков А. И., Дурасова Н. А. и др. М.: Наука, 1978. 184 с.
 Леонова Л. Л. Геохимия четвертичных вулканических пород Курильской островной дуги. В кн.: Магмообразование и его отражение в вулканическом процессе М.: Наука, 1977, с. 148—157.
 Леонова Л. Л., Пополитов Э. И., Волынец О. Н. и др. Типы четвертичных базальтов Камчатки в связи с проблемой первичных магм. В кн.: Петрологические исследования базитов островных дуг. М.: изд. ИФЗ АН СССР, 1978, с. 157—176.
 Меняйлов И. А., Никитина Л. П., Шапарь В. Н. Геохимические особенности эксгаляций Большого трещинного Толбачинского извержения. М.: Наука, 1980. 236 с.
 Петров Л. П., Вольшец О. Н., Флеров Г. Б. и др. Распределение F, В и Ве в поролах Толбачинского извержения 1975—1976 гг. Вулканология и сейсмология,
- дах Толбачинского извержения 1975—1976 гг. Вулканология и сейсмология, 1979, № 3, с. 18—29.
- 10. Пампура В. Д., Волынец О. Н., Пополитов Э. И. Геохимические особенности четвертичных вулканитов. — В кн.: Долгоживущий центр эндогенной активности Южной Камчатки. М.: Наука, 1980, с. 66—76. 11. Пилипенко В. П., Пономарев В. В. Взаимодействие высокотемпературной паро-
- воздушной смеси с лавами и шлаками вулкана Толбачик. Вулканология и сейсмология, 1979, № 5, с. 37—43.
- 12. Сотников В. И., Иванов Б. В. Молибден как один из показателей динамики вулканического процесса. — В кн.: Глубинное строение, сейсмичность и современная деятельность Ключевской группы вулканов. Владивосток: изд. ДВНЦ АН СССР, 1976, с. 85—88. 13. Таусон Л. В. Геохимические типы и потенциальная рудоносность гранитоидов.
- М.: Наука, 1977. 280 с.
- Титаева Н. А., Ермаков В. А., Зозуля Т. А. и др. Геохимические типы базальтов 14 Большого трещинного Толбачинского извержения 1975—1976 гг. — В кн.: Петрологические исследования базитов островных дуг. М.: изд. ИФЗ АН СССР, 1978, c. 69-111.
- 15. Федотов С. А. О подъеме основных магм в земной коре и механизме трещинных
- базальтовых извержений. Изв. АН СССР. Сер. геол., 1976, № 10, с. 5—23.
 16. Федотов С. А., Хренов А. П., Чирков А. М. Большое трещинное Толбачинское извержение 1975 г., Камчатка. Докл. АН СССР, 1976, т. 228, № 5, с. 1193—1196.
 17. Шоу Д. М. Геохимия микроэлементов кристаллических пород. Л.: Недра, 1969.
- 208 c.
- Энгель Дж. А. Е., Энгель Ц. Г. Горные породы ложа океана. В кн.: Основные 18. проблемы океанологии. М.: Наука, 1968, с. 183-217.