Доклады Академии наук СССР 1990. Том 313, №4

УДК 550.42:552.333 ГЕОХИМИЯ

© О.Н.ВОЛЫНЕЦ, В.С.УСПЕНСКИЙ, Г.Н. АНОШИН, М.Г.ВАЛОВ, М.Г. ПАТОКА, ЮМ ПУЗАНКОВ, Ю.Г. ШИПИЦЫН ПОЗДНЕКАЙНОЗОЙСКИЕ ВНУТРИПЛИТНЫЕ БАЗАЛЬТЫ ВОСТОЧНОЙ КАМЧАТКИ

(Представлено академиком Л.В. Таусоном 9 Х1 1989)

Восточный вулканический пояс Камчатки заложился вслед за формированием в позднем миоцене северной части Курило-Камчатского глубоководного желоба [1]. Хотя вещественный состав верхнеплиоцен-четвертичных вулканических пород хорошо изучен [2, 3 и др.], сведения по составу более ранних вулканитов, выходы которых протягиваются полосой вдоль западного обрамления пояса, крайне ограничены [4, 5]. Работы, проведенные при крупномасштабном геологическом картировании на одном из участков западного обрамления пояса, восполнили этот пробел и дали принципиально новые результаты, важные для понимания тектоно-магматической эволюции этой структуры.

Здесь, на восточных отрогах Валагинского хребта, в бассейне р. Левая Жупанова (см. врезку на рис. 1) вулканические проявления установлены в нижних и верхних частях единого поздненеогенового разреза, сопоставимого с щапинской свитой. Возраст последней считается раннеплиоценовым [5], однако нами получены убедительные палеофлористические, палинологические и палеомагнитные доказательства того, что начало накопления осадков следует относить к позднему миоцену. В низах разреза на правых притоках р. Левая Жупанова (руч. Хрустальный, руч. Степанова) среди позднемиоценовых молассоидных образований встречены единичные лавовые потоки (мощностью от 10 до 30—50 м) и дайки, возможно формирующие небольшой палеовулкан. Восточнее в верхней части разреза свиты по обоим берегам р. Левая Жупанова в районе гор Стол и Плоская обнажается более молодой (плиоценовый) базальтовый комплекс. Базальты (реже андезито-базальты) слагают потоки мощностью 5—15 м, расслоенные горизонтами базальтовой пирокластики с линзами терригенных и органогенных (диатомиты) пород, и мощные (до 30 м) протяженные (до 15 км) силлы и дайки. Извержения, по-видимому, носили ареальный характер и привели к формированию лавовых плато.

Среди базальтов нижней части разреза выделяются порфировые и субафировые разности. Вкрапленники в порфировых базальтах сложены магнезиальным (Fo_{84-86}) оливином с вростками глиноземистой шпинели ($A1_2O_3$ 34—45% при TiO_2 23—15%) и высококальциевым глиноземистым ($A1_2O_3$ 5-12%) титанистым (TiO_2 1,4-3,0%) пироксеном (титанистый фассаит и салит). Среди субфенокристов отмечается битовнит An_{69-75} . В основной массе наряду с титанистым клинопироксеном и плагиоклазом развит тройной полевой шпат, анальцим и титаномагнетит. Субафировые базальты содержат единичные вкрапленники оливина, замещенного хлоритом, субфенокристы и микролиты клинопироксена (титанистый фассаит и салит), микролиты титаномагнетита, погруженные в стекловатую основную массу состава Nа-щелочного базальта. В стекле обычны пятнистые выделения и миндалины анальцима и хлорита.

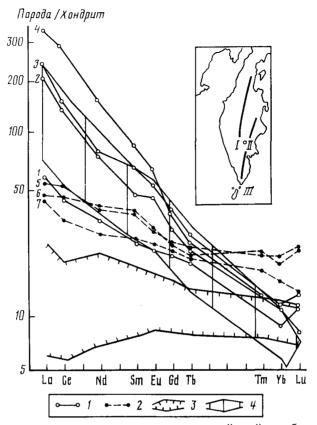


Рис. 1. Распределение редкоземельных элементов в позднекайнозойских базальтах Восточной Камчатки. *I*, *2*- базальты изученного резреза: *I* - позднемиоценовые, 2 -плиоценовые (цифры у кривых соответствуют номерам анализов в табл. 1, 2); *3* - поле позднеплиоцен-четвертичных базальтов Восточного вулканического пояса Камчатки [3]; *4* - поле кайнозойских К-Nа-субщелочных и щелочных базальтов Монголии и Забайкалья [7]. На врезке показано положение вулканических поясов Камчатки (*I* - Срединного хребта,//- Восточный,///- Южный) и обозначен район исследований (кружок)

В составе базальтов верхней части разреза также выделяются порфировые (мегаплагиофировые) и субафировые разности. Первые содержат мегакристы и субфенокристы Лабрадора (An_{60-65}), вкрапленники хризолита (Fo_{72-73}). субфенокристы авгита (Wo_{38-41} , Al_2O_3 2-4%, TiO_2 0,5-1,0%); вторые - единичные вкрапленники оливина. Оснвоная масса обеих разновидностей пород состоит из микролитов Лабрадора, авгита (Wo_{30-35}), железистого оливина (Fo_{44-64}), титаномагнетита и небольшого количества кислого щелочного стекла (SiO_2 66-70%, Na_2O+K_2O 10-11%).

По содержанию щелочей (табл. 1) базальты нижней части разреза соответствуют субщелочным (порфировые) и щелочным (субафировые) разностям, тогда как базальты верхней части разреза — умереннощелочным и субщелочным. При этом "нижние" базальты заметно более магнезиальны, чем "верхние". Для всех лав характерны повышенные содержания TiO_2 и P_2O_5 , особенно высокие в щелочных разностях. Породы, сходные с базальтами нижней части разреза, обнаружены среди даек в районе горы Колючей к северу от рассматриваемой территории [5], а силлы

Таблица 1 Химический состав вулканических пород, мас.%

Компонент	1	2	3	4	5	6	7	8
SiO_2	47,68	46,01	44,80	44,84	51,29	51,21	50,78	46,30
TiO_2	1,75	2,50	2,88	2,75	2,13	2,25	1,81	1,94
$A1_2O_3$	17,30	15,01	15,87	15,00	16,38	16,20	18,60	17,21
Fe_2O_3	1,62	4,59	3,57	6,19	2,48	3,94	3,91	2,51
FeO	6,71	2,90	5,16	2,70	7,93	7,31	6,49	4,47
MnO	0,18	0,17	0,24	0,17	0,22	0,23	0,19	0,07
MgO	10,26	7,14	7,71	6,68	4,88	4,38	3,40	5,38
CaO	7,36	6,45	7,22	6,45	8,20	8,03	8,83	5,94
Na ₂ O	2,60	4,69	2,59	4,96	2,80	3,57	3,44	4,24
K_2O	1,37	1,81	2,70	1,33	1,74	1,52	1,36	3,19
P_2O_5	0,38	1,28	1,09	1,30	0,60	0,58	0,33	0,75
H_2O^+	1,69	4,79	3,22	4,75	0,82	0,04	0,71	7,55
H_2O^{-}	1,23	1,72	2,03	2,42	0,53	0,32	0,49	
CO_2	0,05	0,05	0,26	0,12	0,05	0,07	0,07	0,21
SO_3	0,03	0,03	0,03	0,04	0,07	0,05	0,03	0,04
Сумма	100,16	99,09	99,34	99,70	100,07	99,70	100,41	99,80
K_{Mg}	72,5	68,0	65,9	62,9	50,2	45,8	41,6	62,7

Примечание. 1—4 — позднемиоценовые базальты: 1 — порфировый, 2—4 — субафировые; S—7 — плиоценовые базальты: 5, 6 — субафировые, 7 — мегаплагиофировые; 8 — средний (из 7 образцов) состав неогеновых базальтов из силлов в Тюшевской свите, Конусная структура, Кроноцкий полуостров, по [6]. Анализы 1—7 выполнены в ЦХЛ ПГО "Камчатгеология". $K_{\rm Mg}$ = $MgO[MgO+0.85(FeO+0.9Fe_2O_3)]$ ат.%

щелочных базальтов, близких по составу к изученным щелочным породам (ан. 8 в табл. 1), установлены в низах неогенового разреза при бурении на Кроноцком полуострове с восточной стороны вулканического пояса [6].

"Нижние" базальты имеют высокие концентрации Cr, Ni, Sr, Th, Nb, Ta, легких P3Э, умеренные - Rb, Y, V, Co, Sc, Cu, Zn (и в большинстве проб Ва) при низких Zr/Nb (6-9), La/Ta (12-23) отношениях и сильно дифференцированных спектрах P3Э (табл. 2, рис. 1). В соответствии с меньшей магнезиальностью субафировые базальты характеризуются большими содержаниями литофильных редких элементов и меньшими Cr и Ni, чем порфировые. "Верхние" базальты отличаются от "нижних" более низким уровнем концентраций Sr, Th, Nb, Ta, легких P3Э, а также Cr и Ni при более высоких содержаниях Rb, Y, Yb, V, Cu, больших значениях Zr/Nb (18-25), La/Ta (20-23) отношений и менее дифференцированных спектрах P3Э (табл. 2, рис. 1).

На дискриминационных геохимических диаграммах базальты нижней части разреза попадают в поле внутриплитных вулканитов (рис. 2) и в целом по уровню содержания и отношениям редких элементов, а также особенностям минерального состава весьма близки кайнозойским K-Na-субщелочным и щелочным рифтогенным базальтам Монголии и Забайкалья [7], что на рис. 1 отчетливо видно на примере РЗЭ. На тех же дискриминационных диаграммах (рис. 2) базальты верхней части разреза попадают в поле вулканитов окраинно-континентальных рифтов типа рифта Рио-Гранде [8,9].

Важно подчеркнуть, что позднеплиоцен-четвертичные базальты собственно Восточного вулканического пояса характеризуются типично островодужными геохимическими особенностями [2, 3 и др.], в том числе низкими концентрациями

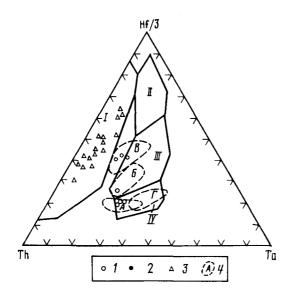


РИС. 2. Диаграмма Th-Hf-Ta для базальтов разных геодинамических обстановок, по [11]. I, 2 - то же, что на рис. 1; 3 - позднеплиоцен-четвертичные базальты Восточного пояса Камчатки, по [3]; 4 - поля базальтов разных регионов: A - о-вов Оки-Дого, Япония [10], E - внутриплитных базальтов Срединного хребта Камчатки [3], E - рифта Рио-Гранде [8, 9], E - Монголии и Забайкалья [7]. E - поля базальтов разных геодинамических обстановок [11]: E - островодужных, E - срединноокеанических хребтов, E - срединноокеанических хребтов и внутриплитных, E - внутриплитных

Таблица 2 Содержание редких элементов в вулканических породах, г/т

Элемент	1	2	3	4	5	6	7
Rb	9	25	16,5	11,5	25,7	28,8	15,8
Sr	648	721	1720	580	349	347	476
Ba	225	445	1282	746	262	225	302
Cu	168	43	90	_	338	325	396
Zn	107	107	113	_	131	137	166
Sc	35	16 , 5	35 , 5	18	32 , 5	37	30
V	219	151.	187	145	438	430	378
Cr	241	186	145	188	96	110	96
Co	36	38,4	35	31	32 , 5	37 , 1	30,5
Ni	160	140	87	111	23	33	23
Y	22,5	24,4	23	25	41,4	46,5	40
Zr	160	364	473	507	199	213	173
Ηf	4,0	10,6	11,2	9 , 6	4,8	5 , 7	3 , 3
Nb	17 , 9	57	67	76	8,0	11,5	7,4
Ta	1,4	5 , 1	5 , 4	4 , 65	0,82	0,85	0,58
Th	2,2	9 , 3	9 , 5	8 , 7	1 , 7	1 , 9	2,0
U	0,65	2 , 9	2 , 9	2 , 9	1,1	_	0 , 75
La	18,2	60,6	66 , 9	109	13 , 9	16,6	13,4
Ce	34,8	107	118	234	35,5	41,4	27,1
Nd	19,6	44,4	46,2	88,2	23,4	22,8	16 , 6
Sm	4 , 9	9 , 6	12,5	16,2	7,0	7 , 2	5 , 0
Eu	1 , 65	3 , 2	3 , 7	4 , 66	2 , 2	2,2	1 , 75
Gd	5 , 4	7,4	9 , 6	9 , 6	6,1	6 , 4	6, 0
Tb	0,87	1,03	1 , 3	1,2	1 , 9	1,1	0 , 95
Tm	-	-	-	0,4	0,68	0,68	0 , 55
Yb	2,0	2,2	2 , 5	2,3	4,0	4,2	3,1
Lu	0,30	0,25	0,41	0 , 35	0,7	0,71	0,4

Примечание. Анализы выполнены в ИГиГ СО АН СССР. Концентрации РЗЭ, Ва, Th, U, Hf, Ta, Co, Sc определялись инструментальным нейтронно-активационным методом; Rb, Sr, Nb, Zr, Y—рентгено-флюоресцентным методом; V, Cr, Ni, Cu, Zn—методом атомной абсорбции. Номера образцов соответствуют таковым в табл. 1.

Ti, P. Nb, Ta, Zr, Cr, Ni, при высоких значениях Zr/Nb (30-120), La/Ta (35-75) и низких La/Yb_N (0,7-1,9) отношений (см. рис. 1 и 2).

Таким образом, в истории развития позднекайнозойского вулканизма Восточной Камчатки наблюдается последовательная смена геохимических особенностей вулканитов от внутриплитных до островодужных, что может быть обусловлено изменением условий генерации (смена растяжения на сжатие) и глубины зарождения магм (от шпинелевой или гранат-шпинелевой фации глубинности мантии к плагиоклазовой фации).

Институт вулканологии Дальневосточного отделения Академии наук СССР Петропавловск-Камчатский Камчатское производственное геологическое объединение Петропавловск-Камчатский Институт геологии и геофизики им. 60-летия Союза ССР Сибирского отделения Академии наук СССР Новосибирск

Поступило 14 XI 1989

ЛИТЕРАТУРА

1. Камчатка, Курильские и Командорские острова. История развития рельефа Сибири и Дальнего Востока/Под ред. И.В. Лучицкого. М.: Наука, 1974. 439 с. 2. Пополитов Э.И., Вольнец О.Н. Геохимические особенности четвертичного вулканизма Курило-Камчатской островной дуги и некоторые вопросы петрогенезиса. М.: Наука, 1981. 182 с. 3. Вольнец О.Н., Анонин Г.П., Пузанков Ю.М., Пархоменко В.С. - ДАН, 1987, т. 293, № 3, с. 685-688. 4. Шанцер А.Е., Краевая Т.С. Формационные ряды наземного вулканического пояса. М.: Наука, 1980. 163 с. 5. Ермаков В.А., Цикунов А.Г., Черных ЕМ. - Вулканол. и сейсмол., 1984, №4, с. 50-66. б.Супруненко О.И., Марковский Б.А. - ДАН, 1973, т. 211, № 3, с. 682-685. 7. Кононова В.А., Первое В.П., ДрынкинВ.И. и др. - Геохимия, 1987, №5, с. 644-659. 8. Basaltic volcanism on terrestrial planets. N.Y.: Pergamon Press, 1981. 1286 р. 9. Dungan М.А., Lindstrom М.М., МсМіllan N.J. et al. - J. Geophys. Res., 1986, №В6, р. 5999-6028. 10. Wood D.A. - Earth and Planet Sci. Lett., 1980, vol. 50, р. 11-30. 11. Wood D.A., Joron J.L, March N.G. et al. - Init. Rep. DSDP, 1980, vol. 58, р. 873-894.