Доклады Академии наук СССР 1983. Том 271, № 5

М.Ю. ХОТИН, В.И. ВИНОГРАДОВ, О.Н. ВОЛЫНЕЦ, Ю.М. ДУБИК, Ю.М. ПУЗАНКОВ ИЗОТОПНЫЙ СОСТАВ СТРОНЦИЯ В АНОРТИТСОДЕРЖАЩИХ ВКЛЮЧЕНИЯХ ВУЛКАНИТОВ КАМЧАТКИ И ПОРОДАХ ФУНДАМЕНТА

(Представлено академиком А.В. Пейве 19 1 1983)

Первые измерения изотопного состава стронция в вулканических породах Камчатки [1] показали его очень большую однородность. По 11 измерениям среднее значение ${}^{87}\text{Sr}/{}^{86}\text{Sr}$ в молодых вулканитах составляет 0,7033 с вариациями от 0,7031 до 0,7036. Были исследованы средние и среднекислые породы 10 действующих вулканов на всем протяжении Восточно-Камчатской вулканической провинции от Шивелуча на северо-востоке до Ксудача на юго-западе, базальт вулкана Ключевской и липарита потухшего вулкана Хангар на севере Срединного хребта Камчатки. Таким образом, авторы [1] показали, что изотопный состав стронция молодых вулканитов Камчатки прямо не зависит от состава пород и структурно-тектонического положения вулканов. Источником расплавов для молодых вулканов Камчатки, по мнению этих авторов, является верхняя мантия с характерным для вулканитов островных дуг изотопным отношением стронция. Вместе с тем вулканиты многих островных дуг и океанических островов [2, 3] имеют большой разброс изотопных отношений стронция и зачастую более высокое среднее их значение, что связывается исследователями с той или иной степенью контаминации мантийного расплава веществом коры во время его дифференциации в промежуточных камерах на разных коровых уровнях.

Низкое и достаточно однородное отношение ⁸⁷Sr/⁸⁶Sr в камчатских вулканитах может свидетельствовать либо о слабой степени загрязнения мантийного вещества коровым, либо о том, что происходила ассимиляция очень молодого корового вещества с невысокой концентрацией радиогенного ⁸⁷Sr. например, в зоне субдукции, если таковая имелась, под Восточно - Камчатской вулканической зоной.

Хорошо известно, что фундамент Камчатки слагают высокометаморфизованные комплексы пород, возраст которых весьма проблематично оценивается как докембрийский. Есть мнение о предположительно меловом возрасте камчатских метаморфид. Породы фундамента известны главным образом в Срединном и Ганальском хребтах и в отдельных небольших выходах на Восточной Камчатке, в том числе на полуострове Камчатского Мыса [4]. По составу пород, входящих в различные комплексы метаморфид, степени метаморфической переработки их и другим геологическим параметрам срединно-камчатские породы фундамента резко отличаются от таковых в Ганальской зоне. Восточно-камчатские метаморфиды ближе к ганальским и, в первую очередь, по меланократовому составу слагающих их пород.

Одной из задач настоящей работы было оценить возможные масштабы влияния пород фундамента на изотопный состав стронция молодых камчатских вулканитов. Другая задача состояла в определениях изотопного состава стронция в оливин-анортитовых включениях камчатских лав с целью выяснения генезиса этих включений.

Таблица 1 Результаты измерений по двум сериям пород фундамента Камчатки

№ обр.	Порода	Содержание, мкг/г		⁸⁷ Sr/ ⁸⁶ Sr	
Nº 00p.		Rb	Sr	31/ 31	
819	Амфиболит—ксенолит в гиперба- зитах Камчатского Мыса	7,5	194	$0,70359 \pm 26$	
	Ганальская с	ерия			
827	Плагиогнейс	41,7	346	$0,70483 \pm 4$	
828	Пироксен-амфиболитовый гнейс	0,9	259	$0,70377 \pm 6$	
830	Гранито-гнейс	7,2	618	$0,70313 \pm 2$	
	Колпаковская	серия			
160	Гнейс	51,6	570	$0,70503 \pm 6$	
712	Гнейс	50,4	531	$0,70510 \pm 5$	
404	Гранито-гнейс	97,2	215	$0,70751 \pm 4$	
453	Мигматит	64,8	475	$0,70776 \pm 4$	

В соответствии с этим для изотопных исследований отобраны преимущественно среднекислые метаморфиты из колпаковской серии Срединного хребта Камчатки (Хангарский купол) и аналогичные породы нижней части ганальской серии в одноименном хребте и метаморфиты из офиолитов Камчатского Мыса. Для решения второй задачи были выделены мономинеральные фракции из наиболее представительных в петрологическом отношении оливин-анортитовых включений в молодых вулканитах Восточно-Камчатских вулканов и вулкана Головнина на юге Курильской гряды:

Измерения изотопного состава стронция выполнены на масс-спектрометре МАТ-260. Все значения $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ нормированы по отношению $^{88}\mathrm{Sr}/^{86}\mathrm{Sr} = 8,37520$ и приведены к значению $^{87}\mathrm{Sr}/^{86}\mathrm{Sr}$ эталона Е.а.А., равному 0,70800. В период проведения работы изотопное отношение в этом эталоне по 11 измерениям составило 0,70805 \pm 0,00003 при 95% доверительном уровне.

Определение концентраций Rb и Sr выполнено E.M. Марголиным (ГИН AH CCCP) на рентгено-флуоресцентном микроанализаторе MECA-1044A с максимальной погрешностью \pm 10%. Результаты всех измерений приведены в табл. 1 и 2.

Как видно из данных табл. 1, средние значения изотопного состава стронция в породах ганальской и камчатской серий различны. Для ганальской серии оно составляет 0,7038. Это лишь немного выше, чем изотопное отношение стронция в камчатских вулканитах [1]. Есть все основания предполагать, что породы типа ганальской серии слагают фундамент Восточно-Камчатской вулканической Ксенолиты подобных пород обычны среди вулканитов Восточно-Камчатской зоны. Кроме того, крупные массивы аналогичных пород часто ассоциируют с офиолитами Восточной Камчатки. Близость изотопных отношений стронция в современных вулканитах и породах фундамента позволяет говорить о принципиальной возможности интенсивной коровой контаминации исходного мантийного материала. Однако однородность изотопного состава стронция вулканитов на огромной территории заставляет предполагать, что эта ассимиляция происходит в больших объемах магм с усреднением изотопного состава стронция по всему объему пород и с сохранением их химического разнообразия. Для оценки масштабов усреднения

Таблица 2 Результаты измерений концентраций Rb и Sr и изотопного состава стронция в минералах анортитсодержащих включений

№ обр.	Вулкан	Минерал	Содержание, мкг/г		⁸⁷ Sr/ ⁸⁶ Sr
			Rb	Sr	51/ 51
5350	Кихпиныч	Плагиоклаз	_	363	0.70340 ± 5
КВ-2	Ксудач	Плагиоклаз	_	395	$0,70347 \pm 8$
	<i>II</i>	Клинопироксен	0,027*	18,9*	0.70330 ± 5
	11	Оливин	0,005*	1,2*	0.70346 ± 3
5845	Ильинский	Плагиоклаз	_	_	0.70338 ± 8
	II .	Шлак (базальт)	=	_	$0,70327 \pm 4$
	"	Плагиоклаз	_	_	$0,70341 \pm 5$
	II .	Клинопироксен	0,126*	22,6*	$0,70322 \pm 7$
	II .	Оливин	0,030*	1,95*	$0,70316 \pm 10$
5945	Головнина	Плагиоклаз	_	_	$0,70360 \pm 5$

^{*} Измерены методом изотопного разбавления.

нужны детальные исследования изотопного состава стронция на ограниченных площадях.

Среднее изотопное отношение стронция в породах колпаковской серии несколько выше и составляет 0,7063. Может быть, именно с их контаминирующим влиянием связано одно из самых высоких отношений стронция (0,7035), обнаруженное в кислых лавах вулкана Хангар [1].

Анортитсодержащие включения четко выделяются среди других разновидностей базитовых включений в вулканитах [5]. Они встречаются исключительно в ассоциации с низкокалиевыми базальтами или более кислыми продуктами их дифференциации. Главными минералами включений являются анортит (в среднем An_{93}) и весьма железистые (f=22—24%) оливины и клинопироксены, причем плагиоклаз заметно преобладает. Значительно меньше распространены гиперстен, магнетит и шпинель. В пористых разновидностях включений наблюдается стекловатый шлак, сходный по составу с вмещающими базальтами. Структурные особенности включений, а также результаты исследований температур кристаллизации минералов [6] определенно указывают на более позднюю, по сравнению с парой оливин—анортит, кристаллизацию клинопироксена. Подобные включения известны в вулканитах многих островных дуг и в молодых спрединговых центрах [7-9], где они также ассоциируются с низкокалиевыми базальтами, содержащими повышенные концентрации Al₂O₃ и CaO. Предполагается, что подобные включения формировались за счет протокристаллизации таких базальтовых расплавов на небольших глубинах в вулканических каналах и промежуточных очагах.

Изотопный состав стронция в оливин-анортитовых включениях (табл. 2) в точности совпадает с данными по молодым лавам Камчатки [1]. Больше того, все минеральные фазы включений имеют практически одинаковый изотопный состав стронция. Это определенно говорит о родственности материала включений и вмещающих лав и, скорее всего, свидетельствует об образовании включений за счет частичной ранней кристаллизации (протокристаллизации) лавового материала.

На основании изложенного можно сделать следующие выводы.

1. Обнаружены низкие изотопные отношения стронция в породах фундамента Камчатки, что позволяет допустить частичную мобилизацию вещества фунда-

мента при формировании разнотипных камчатских лав.

2. Изотопный состав стронция в минералах анортит-оливиновых включений в молодых вулканитах Камчатки свидетельствует об образовании этих включений за счет кристаллизации материала вмещающих их лав.

Геологический институт Академии наук СССР, Москва Поступило 25 I 1983

ЛИТЕРАТУРА

1. Хедж К.Е., Гориков Г.С. - ДАН, 1977, т. 233, №6, с. 1200-1203. 2. Matsuda J.-I., Zashu S., Ozima M. In: Ocean ridges and arcs geodinam. processes. Amsterdam, 1980, р. 383-393. 3. Nohda S., Wasserbug G.J. - Earth Planet. Sci. Lett., 1981, vol.52, №2, р. 264-276. 4. Хо-тин М.Ю. Эффузивная туфово-кремнистая формация Камчатского мыса. М.: Наука, 1976. 194 с. 5. Вольнец О.Н., Щека С.А., Дубик Ю.М. В кн.: Включения в вулканических породах Курило-Камчатской островной дуги. М.: Наука, 1978, с. 124-167. 6. Селянгин О.Б. Бюл. вулканол. ст. ДВНЦ АН СССР, 1975, № 51, с. 74-76. 7. Lewis J.F. - Contrib. Mineral. Petrol., 1973, vol. 38, № 38, р. 197-220. 8. Baker P.E. - Bull. Volcan., 1968, vol. 32, №1, р. 189-208. 9. Donald-son C.H. - J. Petrol., 1977, vol. 18, №4, р. 595-620.