Доклады Академии наук СССР 1989. Том 307, № 5

УДК 549.643 (571.66+571.645)

МИНЕРАЛОГИЯ

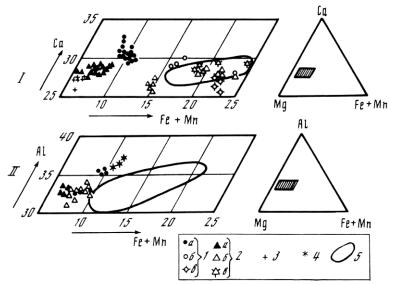
О.Н. ВОЛЫНЕЦ, В.В. АНАНЬЕВ

ХРОМИСТЫЕ АМФИБОЛЫ И СЛЮДЫ УЛЬТРАОСНОВНЫХ ВКЛЮЧЕНИЙ В ЧЕТВЕРТИЧНЫХ ЛАВАХ КАМЧАТКИ И КУРИЛ

(Представлено академиком Л.В. Таусоном 17 V 1988)

Присутствие хромистых амфиболов [1—6] и слюд [4, 5, 7, 8] установлено во многих включениях шпинелевых лерцолитов (реже вебстеритов) в щелочных оливиновых базальтах континентов. Однако в гипербазитовых включениях из вулканитов островных дуг находки хромистых амфиболов единичны [9—11], а хромистые слюды вообще не описаны. В связи с этим представляют интерес данные о наличии таких минералов в ультраосновных включениях из четвертичных лав Камчатки и Курил.

Ранее в пределах Курило-Камчатской островной дуги была известна только одна находка хромистого амфибола в гипербазитовых включениях вул. Авачинский [11]. Нами изучены хромистые амфиболы из гарцбургитов этого вулкана, а также впервые установлены хромистые амфиболы в дунитах и вебстеритах вул. Шивелуч, вебстеритах вул. Ключевской (Камчатка), лерцолитах, гарцбургитах и вебстеритах вул. Чиринкотан (Курилы). Хромистые слюды впервые обнаружены во включении гарцбургита вул. Чиринкотан, дунита и вебстерита вул. Шивелуч, верлита моногенного вул. Чинк (Камчатка), а безхромистая слюда — в клинопироксенитовом включении вул. Большая Кетепана (Камчатка). Детальное описание гипербазитовых включений в лавах Камчатских вулканов приводится в [12, 13], а в лавах вул. Чиринкотан — в [14], поэтому мы не будем останавливаться на их характеристике.

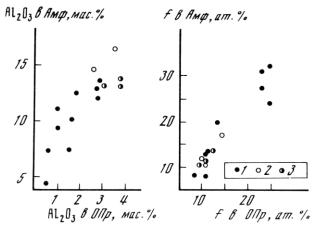

Структурно-морфологические особенности проявления хромистых амфиболов и слюд в гипербазитовых включениях различны. Эти минералы встречаются в виде мелких 10—30 мкм вростков в орто- и клинопироксенах (лерцолиты и гарцбургиты вул. Чиринкотан, верлиты вул. Чинк), слагают мелкие 15—30 мкм выделения вокруг зерен зональной шпинели, а также в зонах перекристаллизации (дуниты вул. Шивелуч, гарцбургиты вул. Авачинский, вебстериты вул. Ключевской), образуют крупные 1—2 мм пойкилитовые зерна (вебстериты вулканов Шивелуч, Ключевской, Чиринкотан, клинопироксениты вул. Большая Кетепана). В гарцбургитовом нодуле с вул. Чиринкотан амфиболы и слюды установлены также в виде минералов-узников в расплавных микровключениях в ассоциации с кислым плагиоклазом, К—Nа-полевым шпатом, Cr—Al-шпинелью и риодацитовым стеклом.

Таким образом, в гипербазитовых включениях из лав Курило-Камчатской островной дуги установлены оба главных морфологических типа хромсодержащих "верхнемантийных" амфиболов и слюд, известных во включениях из щелочных базальтов [3, 5]: интерстициальный и пойкилитовый. Как и везде, интерстициальные амфиболы и слюды менее железисты и более хромисты, чем пойкилитовые (табл. 1, рис. 1). При этом вариации в содержаний Cr_2O_3 в разных зернах интерстициальных амфиболов и слюд одного образца обычно не более 1,3–1,7-кратных, однако иногда (слюды из дунита вул. Шивелуч), а в случае пойкилитовых разностей, как правило, достигают 10-кратной и более разницы, изменяясь от 0,0 до 0,7—1,0%. Амфиболы из расплавных микровключений в гарцбургитовом нодуле вул. Чиринкотан по железистости и хромистости соответствуют пойкилитовым амфиболам из

Таблица 1 Химический состав амфиболов и слюд из ультраосновных включений в лавах четвертичных вулканов Камчатки и Курил, мас.%

№ п.п.	SiO ₂	TiO ₂	Al ₂ O ₃	Cr ₂ O ₃	FeO	MnO	MgO	CaO	Na ₂ O	K ₂ O		f	n
1	53,92	0,17	4,35	0,80	3,18	0,07	20,48	12,17	1,14	0,30	96,58	8,1	2
2	48,42	0,29	8,07	1,47	4,18	0,08	19,35	12,09	1,88	0,63	96,45	11,0	16
3	49,99	0,05	7,41	1,27	3,25	0,04	20,54	11,74	1,44	0,18	95,91	8,1	3
4	45,29	0,80	12,20	1,46	4,53	0,06	17,13	12,93	2,15	0,10	96,65	13,1	3
5	44,09	0,49	13,80	1,23	4,97	0,07	16,74	11,84	2,16	0,70	96,09	13,7	13
6	45,22	0,92	12,59	0,30	7,42	0,10	17,04	10,69	2,42	0,79	97,59	19,9	5
7	41,30	2,39	13,11	0,30	10,59	0,14	14,18	10,97	2,57	0,51	96,07	29,9	6
8	43,90	1,23	11,85	0,10	10,50	0,17	14,87	11,71	2,07	0,95	97,35	28,8	5
9	39,64	0,39	16,15	1,62	2,91	0,00	23,39	0,00	1,11	8,76	93,97	6,5	8
10	39,77	0,55	15,97	0,26	4,74	0,03	22,80	0,05	1,75	7,77	93,70	10,5	5
11	38,36	1,64	15,83	1,42	5,93	0,04	21,50	0,01	0,99	8,76	94,45	13,5	3
12	39,24	1,23	15,60	0,30	5,82	0,04	22,42	0,00	1,11	8,68	94,44	12,8	11
13	37,66	2,78	16,74	0,54	7,30	0,09	18,92	0,10	0,82	9,33	94,28	18,0	2

Примечание: 1-9 — амфиболы: 1-5 — интерстициальные (1-2 — дунит, вул. Шивелуч, обр. 5734/2; 3 — гарцбургит, вул. Авачинский, обр. 2A; 4 — лерцолит, вул. Чиринкотан, обр. B17-305/31; 5 — гарцбургит, вул. Чиринкотан, обр. B17-305/42); 6, 7 — пойкилитовые: (6 — вебстерит, вул. Шивелуч, обр. 5736/2; 7 — вебстерит, вул. Ключевской, обр. 19/120); 8 — оторочка вокруг включения дунита, вул. Шивелуч, обр. 5734/2. 9 — 13 — слюды: 9-11 — интерстициальные (9 — дунит, вул. Шивелуч, обр. 5702; 10 — дунит, вул. Шивелуч, обр. 5734/2; 11 — (и расплавных микровключений), гарцбургит, вул. Чиринкотан, обр. 12 — пойкилитовые, вебстерит, вул. Шивелуч, обр. 13 — интерстициальные, вул. Чиринкотан, обр. 13 — интерстициальные, вул. Чинк, обр. 13


Рис. 1. Составы амфиболов (I) и слюд (II) из ультраосновных включений в четвертичных лавах Курило-Камчатской островной дуги. I - из включений в лавах вул. Чиринкотан (a - интерстициальные, δ — расплавных включений и пойкилитовые, ϵ — оторочки вокруг включений); 2 — из включений в лавах вулканов Шивелуч и Ключевской (a — интерстициальные, ϵ — пойкилитовые, ϵ - оторочки вокруг включений); δ - из включений в лавах вул. Авачинский (интерстициальные) ; δ - из включений в лавах вул. Авачинский (интерстициальные) ; δ - поля вкрапленников в базальтах Камчатки и Курил

вебстеритовых включений, тогда как слюды — интерстициальным слюдам из гарцбургитов.

В целом слюды из гипербазитовых включений Камчатки и Курил — низкотитанистые, высокоглиноземистые, хромистые флогопиты — близки по составу интерстициальным слюдам из лерцолитовых включений в щелочных базальтах [5] и обычно отличаются от них лишь несколько повышенной железистостью (см. табл. 1). Слюда из пироксенитового включения вул. Большая Кетепана обычна по составу для слюд пироксенитовых включений [5]. Это безхромистый, относительно железистый (f = 24,5 ат.%) флогопит.

Интерстициальные амфиболы их ультраосновных включений в щелочных базальтах имеют низкую железистость, титанистость, повышенную глиноземистость, относительно высокое содержание щелочей (f=9-14 ат.%, $AI^{IV}>1.5$, Na+K=1.0-1.2 формульных единиц) и отвечают по составу хромистым паргаситам [1-6]. Интерстициальные амфиболы из включений в лавах Курило-Камчатской островной дуги (см. табл. 1) при сходной железистости и титанистости всегда менее щелочные (Na+K<1.0 ф.е.). По соотношению AI^{IV} и щелочей среди них выделяются паргаситы - из лерцолитов и гарцбургитов вул. Чиринкотан, магнезиальные обыкновенные роговые обманки — из дунитов и гарцбургитов вулканов Авача и Шивелуч и тремолиты — из дунитов вул. Шивелуч. Пойкилитовые амфиболы из вебстеритов вул. Шивелуч — паргаситы, а из вебстеритов вулканов Ключевского и Чиринкотан — гастингситы. При этом лишь пойкилитовые амфиболы двух последних включений соответствуют по главным компонентам амфиболы включений, а также слюды из них заметно отличаются от соответствующих минералов лав (см. рис. 1).

Устанавливается закономерная связь составов амфиболов с составом главных минералов ультраосновных включений, что на рис.2 продемонстрировано на примере

Рис. 2. Соотношение глиноземистости (a) и железистости (b) амфиболов и ортопироксенов ультраосновных включений. b - Камчатка и Курилы; b - Япония b - Япония b - Монголия b - Прибайкалье b - Зйфель b - Монголия b - Монголия b - Прибайкалье b - Зйфель b - Монголия b - Монголи

соотношения железистости и содержания глинозема в амфиболах и ортопироксенах. Подобные же связи наблюдаются между составами амфиболов и клинопироксенов, амфиболов и шпинелей. Разная щелочность амфиболов из гипербазитовых нодулей в лавах островных дуг и щелочных базальтах континентов коррелируется с разным содержанием натрия в клинопироксенах из них. По-видимому, такие связи, наряду с морфологическими особенностями амфиболов и слюд в гипербазитовых включениях, можно рассматривать в качестве признака, указывающего на их метасоматическую природу. Отличие составов этих минералов из нодулей и лав позволяет присоединиться к существующему представлению о глубинном (мантийном) генезисе амфиболов и слюд в гипербазитовых включениях под влиянием потока водных флюидов [3,5].

Таким образом, находки амфиболов и слюд в ультраосновных включениях из лав Курило-Камчатской островной дуги могут служить указанием на процессы метасоматического преобразования мантийного вещества в недрах этой структуры. Подчеркнем, что спецификой амфиболов из гипербазитовых нодулей в островодужных лавах является пониженная щелочность и изменчивая глиноземистость, прямо связанные с особенностями состава главных минералов включений.

Институт вулканологии Дальневосточного отделения Академии наук СССР Петропавловск-Камчатский Поступило 6 VI 1988

ЛИТЕРАТУРА

1. Ионов Д.А., Борисовский С.Е., Коваленко В.И., Рябчиков И.Д. - ДАН, 1984, т. 276, № 1, с. 238-242. 2. Рассказов С.В. - ДАН, 1983, т. 269, №3, с. 703-706. 3. Веѕт М.G. - Ј. Geophys. Res., 1974, vol. 79, №4, р. 2107-2113. 4. Fransis D.M. - Ј. Petrol., 1976, vol. 17, part 3, р. 357-378. 5. Wilkinson J.F.G., Le Maitre R.W. - Ibid., 1987, vol. 28, part 1, р. 37-73. 6. Witt G., Seek H.A. - Ibid., 1987, vol. 28, part 3, р. 475-493. 7. Ионов Д.А., Борисовский Е.Е., Коваленко В.И, Рябчиков И.Д. - ДАН, 1983, т. 269, № 5, с. 1189-1192. 8. Семенова В.Г., Соловьева Л.В., Владимиров Б.М. Глубинные включения в базальтоидах Тонкинского Становика. Новосибирск: Наука, 1984. 119 с. 9. Кипо Н., Aoki К.І. - Phys. Earth and Planet Inter., 1973, vol. 3, р. 273-301. 10. Aoki K., Shiba I. - J. Japan. Assoc. Mineral. Petrol., Econom. Geol., 1973, vol. 68, р. 303-310. 11. Щека С.А., Щека Ж.А. - ДАН, 1973, т. 211, № 4, с. 953-959. 12. Колосков А.В., Хотин М.Ю. В кн.: Включения в вулканических породах Курило-Камчатской островной дуги. М.: Наука, 1978, с. 36-66. 13. Колосков А.В., Волынец О.Н., Пополитов Э.И. В кн.: Мантийные ксенолиты и проблема ультраосновных магм. Новосибирск.: Наука, 1983, с. 86-95. 14. Цевтков А.А., Авдейко Г.П. -ДАН, 1982, т. 267, №5, с. 1199-1203.