НЕОГЕНОВЫЙ ЩЕЛОЧНО-БАЗАЛЬТОВЫЙ ВУЛКАНИЗМ СЕВЕРНОЙ МОНГОЛИИ: ПЛАТО ХЭВЭН ЗАЛУ УРИЙН САРЬДАГ

С.С. Цыпукова¹, А.Б. Перепелов¹, Л.А. Павлова¹, Е.И. Демонтерова²

¹Институт геохимии им А.П. Виноградова СО РАН, Иркутск, e-mail: region@igc.irk.ru ²Институт земной коры СО РАН, e-mail: dem@crust.irk.ru

Петролого-геохимические исследования вулканизма внутриконтинентальных рифтовых областей ставят своей целью не только реконструкцию условий магмообразования и установление источников магматических расплавов, но и определение главных параметров состояния и эволюции литосферы и мантии в целом. В настоящей работе приводятся первые минералого-геохимические данные по труднодоступному вулканическому плато Хэвэн Залу Урийн Сарьдаг в Северной Монголии, входящему в состав Прихубсугулского вулканического ареала. Этот вулканический ареал представляет значительный интерес в изучении раннего этапа тектоно-магматического развития Байкальской рифтовой зоны.

Геологическая позиция и строение. Вулканическое плато Хэвэн Залу Урийн Сарьдаг находится в юго-западной части Байкальской рифтовой зоны и локализовано в области Хамар-Дабанского и Джидинского террейнов, аккретированных в раннем палеозое к Тувино-Монгольскому массиву (микроконтиненту) [Беличенко и др., 2003]. Размеры плато составляют 22 на 32 км (рис. 1), его территория возвышается над уровнем оз. Хубсугул ~ на 800 м. Лавовые базальтовые покровы плато перекрывают породы рифейских и раннекембрийских метаморфических толщ и средне- верхнекембрийские гранитные комплексы. Плато представляет собой денудированную и вскрытую протяженными речными долинами лавовую толщу, в разрезах которой насчитывается суммарно более 30-ти моногенных лавовых покровов общей мощностью до 150 м. Мощности отдельных лавовых покровов достигают 15 м, а некоторые их них протягиваются по долинам палеорельефа на расстояние до 8-10 км. Центры извержений имели трещинный характер и были сконцентрированы на центральных и северных участках плато. Возраст базальтовых извержений в Восточном Прихубсугулье определен К-Аг методом и составил 27,6 – 26,4 млн. лет, поздний олигоцен [Гарваа и др., 1998], однако датировок, выполненных различными методами, приводят других сопоставление исследователей к выводу о миоценовом возрасте вулканизма [Демонтерова и др., 2007].

Рис. 1. Плато Хэвэн Залу Урийн Сарьдаг в строении неогенового вулканического ареала Прихубсугулья (Северная Монголия). 1 - неоген-четвертичные осадочные отложения, средне- верхнекембрийские и девонские гранитные комплексы, рифейские и раннекембрийские метаморфические толщи; 2 – вулканическое плато Хэвэн Залу Урийн Сарьдаг, 3 – другие неогеновые вулканогенные комплексы.

Классификация пород и методы аналитических исследований. На классификационной диаграмме (рис. 2) точки составов пород плато расположены в поле трахибазальтов и гавайитов. В связи с тем, что базальтоиды характеризуются К-Na составом (Na₂O/K₂O=1.75-2.09) и присутствием нормативного нефелина (1,3 - 5,6%), они классифицируются как гавайиты. Содержания микроэлементов в гавайитах определены методом ICP-MS на масс-спектрометре Element 2, а составы минералов установлены на микроанализаторе Jeol XA-8200 (Байкальский центр коллективного пользования ИНЦ СО РАН).

Рис. 2. Классификационная диаграмма SiO₂-(K₂O+Na₂O) для гавайитов плато Хэвэн Залу Урийн Сарьдаг по [LeBas et al., 1986]. 1 – базальтоиды Прихубсугулья по [Демонтерова и др., 2007]; 2 – гавайиты плато Хэвэн Залу Урийн Сарньдаг. Сокращения наименований типов пород: БЗ – базаниты, ТБ – трахибазальты, ГВ - гавайиты, ТАБ – трахиандезито-базальты, Б – базальты, АБ – андезито-базальты.

Петрография и минералогия. Гавайиты представляют собой мелкопорфировые и иногда редкопорфировые породы. В центральных зонах крупных лавовых покровов породы в высокой степени раскристаллизованы. Среди вкрапленников в породах абсолютно преобладают идиоморфные и ксеноморфные обломочные оливины (OI) размером до 1,5-2 мм (рис. 3). Во вкрапленниках OI в отдельных разностях пород наблюдаются включения шпинели (Sp) и раскристаллизованные расплавные включения. Значительно более редки вкрапленники и сростки клинопироксенов (Cpx) (до 1-1,5 мм). Единичные вкрапленники представлены плагиоклазом (PI) с зональным строением кристаллов (до 1 мм). Структуры основной массы гавайитов варьируют от гиалопилитовых и интерсертальных до эссекситовых и диабазовых. В основной массе пород наиболее широким распространением пользуются микролиты полевых шпатов и Cpx с подчиненным количеством OI и значительным количеством мельчайших зерен титаномагнетита (TiMgt), ильменита (IIm) и апатита (Ap). В срастании и в интерстициях между микролитами PI в гавайитах присутствуют также анальцимы, нефелины и остаточное стекло (нефелиновые твердые растворы). В породах отмечены крайне редкие микролиты эгирин-авгитов (Aeg-Aug).

Рис. 3. Вкрапленник Ol (Fo₈₈) в гавайитах (обр. 3433). Снимок в обратно-рассеянных электронах (микроанализатор Jeol XA-8200, оператор Л.А. Павлова).

Наиболее магнезиальные составы Ol (Fo₈₈₋₈₆) обнаружены в центральных зонах редких резорбированных вкрапленников (рис. 3). Более мелкие и идиоморфные вкрапленники Ol представлены менее магнезиальными составами (Fo_{84.82}), которые от центра к промежуточным зонам переходят к составам Fo₈₂₋₇₆ и затем к Fo₇₈₋₆₄ в краевых зонах. Субфенокристаллы Ol изменяются по составам от Fo₈₀₋₇₈ к Fo₆₂₋₅₇ а микролиты эволюционируют от Fo₆₇ до Fo₄₀. В направлении от вкрапленников к микролитам в Ol наблюдается увеличение тефроитового минала (от 0,15-0,25 до 0,50-1,07 %) и повышаются содержания СаО (от 0,14-0,22 до 0,41-0,87 мас.%). Содержания NiO во вкрапленниках Ol из гавайитов варьируют от 0.07 до 0.22 мас.%. Содержания ZnO характерны для микролитов и достигают 0,11 мас.%. Температуры кристаллизации для большинства вкрапленников Ol получены в безводной системе при достижении равновесных условий (KD_{Fe2+/Mg}=0,30-0,35) для наблюдаемых составов гавайитов (расплавов) или при добавлении к ним 1,5 об.% Fo₈₈ (метод «растворения») и составили 1366-1339°С [Putirka, 2005], тогда как наиболее магнезиальные OI (Fo_{88.86}) характеризуются заметно более высокими температурами кристаллизации (1459-1446°С) с достижением равновесных условий при добавлении 9 об.% Fo₈₈. При расчете температур кристаллизации Ol в условиях водосодержащей системы (оценка содержаний H₂O по [Dixon et al., 1997]) значения снижаются примерно на 40°С. Следует отметить, что при вариациях величин «растворения» Ol Fo₈₈ от 9 до 13 объем. % для всех наблюдаемых составов гавайитов условия равновесной кристаллизации Ol Fo₈₈ достигаются также и при температурах 1478-1494°С (KD_{Fe2+/Mg}=0,32), которым соответствуют диапазоны давлений от 20 до 25 кбар [Albarede, 1992; Демонтерова и др., 2007]. Представляется, что наблюдаемые в отдельных типах гавайитов оливины Fo₈₈ отражают начальный мантийный этап кристаллизации щелочно-базитовых расплавов.

Клинопироксены в гавайитах представлены в основном салитами, реже авгитами и крайне редко диопсидами. Среди последних наблюдаются высокохромистые разности с содержанием Cr_2O_3 до 1,0 мас.% (Сг-диопсиды). Авгитовые составы (Wo_{39-42} , Fs_{10-13} , TiO_2 0,7-1,8 мас.%, Al_2O_3 3,6-6,8 мас.%) характерны для вкрапленников Срх, находящихся в срастании с вкрапленниками оливинов. В краевых зонах вкрапленников Срх авгиты сменяются салитами (Wo_{45-47} , Fs_{10-12} , TiO_2 1,3-2,0 мас.%, Al_2O_3 2,7-4,2 мас.%). С переходом к субфенокристаллам в Срх возрастают содержания Fs минала (до 19,5%) и TiO₂ (до 4,4 мас.%). Далее к микролитам Срх происходит рост концентрации Wo минала (до 49%) и Fs минала (до 23%). Содержания Na₂O от вкрапленников Срх к их микролитам возрастают в диапазоне 0,4 – 2,8 мас.%. В редких и мельчайших зернах эгирин-авгитов из гавайитов содержания Na₂O достигают 5 мас.%. По геобарометру [Nimis, Ulmer, 1998] давление кристаллизации вкрапленников Срх (авгитов) заключено в интервале 2,4-7,5 кбар и соответствует, вероятно, этапу кристаллизации щелочнобазитовых расплавов в промежуточном магматическом очаге.

Эволюция составов полевых шпатов в гавайитах происходит в обычном для последовательной кристаллизации расплавов направлении с увеличением щелочности минералов. Редкие вкрапленники, субфенокристаллы и микролиты плагиоклазов представлены в центральных зонах лабрадорами и андезинами (An₆₁₋₃₆ Or_{1,3-4,9}), которые сменяются в краевых зонах более кислыми андезинами и олигоклазами (An₅₁₋₂₃ Or_{1,9-10,0}). В краевых зонах субфенокристаллов и среди микролитов определены анортоклазовые составы (An₂₁₋₁₁ Or₁₄₋₃₁) и K-Na полевые шпаты (Ab₆₄₋₄₀ Or₄₈₋₂₇).

Магнетиты основной массы гавайитов отличаются высокой титанистостью (TiO₂ 20-28 мас.%), для них характерны повышенные содержания Al_2O_3 (0,6-1,6 мас.%), MgO (0,8 1,9 мас.%) и ZnO (0,15-0,21 мас.%). Ильмениты пород также характеризуются повышенными содержаниями MgO (1,2 - 2,8 мас.%). Шпинели из включений во вкрапленниках.Ol представлены хромпикотитами с содержанием Cr_2O_3 18-26 мас.%, Al_2O_3 13-26 мас.% и MgO 8-12 мас.%.

Среди интерстиционных выделений наиболее представительные составы нефелинов (Ne) имеют характеристики Ne₈₁₋₆₈ Ks₈₋₆, а анальцимы отличаются от идеальных составов более высокими содержаниями Al_2O_3 (до 29 мас.%). В целом среди щелочных алюмосиликатов из интерстиций преобладают водосодержащие разности, представляющие собой твердые растворы в широком диапазоне составов. Общими для них являются высокая Na-щелочность (от 11 до 16 мас. % Na₂O).

Петрохимия, редкоэлементный и изотопный состав. К петрохимическим особенностям гавайитов следует отнести высокие концентрации TiO₂, MgO и P₂O₅ при

умеренной глиноземистости пород (табл.). Коэффициент магнезиальности (Mg#) гавайитов составляет 60,2-65,4. Лавы плато принадлежат к внутриплитному геохимическому типу (Ba/Nb=9,6-11,8) с высокими содержаниями HFSE компонентов (Nb, Ta). К характерным геохимическим особенностям пород следует отнести также повышенные содержания REE при их достаточно высокой степени фракционирования ($La_N/Yb_N=12,1-13,6$). По содержанию всех петрогенных и редких элементов гавайиты плато Хэвэн Залу Урийн Сарьдаг соответствуют уровням их концентраций в одноименных породах других неогеновых вулканических объектов Прихубсугулья [Демонтерова и др., 2007]. На диаграммах распределения магматофильных элементов (рис. 4) гавайиты близки к среднему составу OIB и отличаются от него несколько более пониженными концентрациями Th, U, Zr, Hf и Y, а также слабо выраженными положительными аномалиями для Ba, Pb, Sr и K. Наблюдается вещественная стратификация вулканической толщи с появлением наиболее кремнекислых и обогащенных LLIE компонентами пород среди лавовых покровов верхних горизонтов плато. Это указывает на реализацию в магматической системе процессов дифференциации расплавов.

Рис. 4. Диаграмма распределения магматофильных элементов для гавайитов плато Хэвэн Залу Урийн Сарьдаг. Содержания элементов нормированы на примитивную мантию по [Sun, McDonough, 1989].

Изотопные характеристики Sr и Nd для гавайитов плато Хэвэн Залу Урийн Сарьдаг варьируют в дипазоне ⁸⁷Sr/⁸⁶Sr 0,7043-0,7045, ¹⁴³Nd/¹⁴⁴Nd 0,51265-0,51285 (εNd от 0 до +4). Эти значения характерны для кайнозойских базальтов южной части Байкальской рифтовой зоны [Рассказов и др., 2002] и не отличаются от изотопных характеристик других щелочно-базальтовых комплексов Прихубсугулья [Ivanov and Demonterova, 2009, submitted]. Прямой корреляции между ⁸⁷Sr/⁸⁶Sr и 1/Sr не наблюдается, что свидетельствует об отсутствии или незначительной роли процессов коровой контаминации щелочно-базальтовых магм.

Выводы. Гавайиты плато Хэвэн Залу Урийн Сарьдаг соответствуют диапазону составов щелочно-базальтовых комплексов Прихубсугулья в южной части Байкальской рифтовой зоны. Образование щелочно-базальтовых магм плато происходило в мантии при давлениях ~20-25 кбар, а вариации их составов обусловлены процессами кристаллизационной дифференциации.

Исследования выполнены при финансовой поддержке грантов РФФИ №№ 08-05-98100-р_сибирь_а, 08-05-90213-Монг_а, Интеграционных проектов СО РАН №№ 37, 142 и Программы Президиума РАН № 16 (Проект № 11).

№ обр.	3250	3252	3253	3254	3256	3257	3433
SiO ₂	48.09	46.67	47.95	48.32	49.03	47.30	49.32
TiO ₂	2.37	2.55	2.35	2.40	2.25	2.43	2.30
Al ₂ O ₃	14.60	14.29	15.09	15.08	15.09	15.08	15.07
Fe ₂ O ₃	2.43	3.70	1.79	2.36	3.39	2.64	1.48
FeO	8.44	7.54	8.80	8.26	7.36	8.80	8.80
MnO	0.15	0.16	0.15	0.15	0.16	0.15	0.14
MgO	8.70	8.69	8.36	7.87	7.67	8.06	7.39
CaO	8.21	8.34	8.22	8.18	7.99	8.05	8.05
Na ₂ O	3.88	3.33	3.51	3.58	3.92	3.32	4.03
K ₂ O	1.95	2.09	1.94	2.05	1.88	1.75	1.97
P_2O_5	0.59	0.57	0.61	0.68	0.62	0.61	0.64
LOI	0.46	1.89	1.33	0.93	0.84	1.38	0.76
Сумма	99.87	99.82	100.09	99.86	100.18	99.55	99.96
Be	1.7	1.7	1.7	1.8	1.8	1.7	1.8
Rb	20	22	21	22	21	15	21
Cs	0.22	0.61	0.28	0.39	0.18	0.12	0.27
Ba	417	451	420	431	471	398	441
Sr	820	916	865	879	911	835	877
Sc	19	18	19	18	17	16	19
Со	51	46	49	46	46	49	43
Ni	159	137	86	84	95	131	81
Cr	247	229	226	208	235	213	200
V	189	192	185	190	184	175	169
Pb	3.0	3.2	2.9	3.1	3.4	2.9	2.9
Cu	43	38	24	32	27	37	29
Zn	123	11/	131	122	131	150	119
	2.3	2.6	2.2	2.4	2.3	2.1	2.1
	39.2 179	4/.1	41.3	43.5	42.1	3/.3	38.5
Zr Hf	1/8	200	1/9	202	194	180	185
<u>пі</u> ть	4.0	4.4	2.20	4.3	2.9	4.0	2.20
	2.34	2.94	2.39	2.74	2.40	2.04	2.39
	26.4	30.7	27.8	28.0	28.8	25.2	26.8
La Ce	20. 4 57.7	50.7 66.9	27.8 61.8	20.9 64 1	20.0 62.3	23.2 56.4	20.8 59.5
Dr	7 46	8 77	7 98	8 28	7 91	7 16	7.63
Nd	30.9	36.1	327	34.2	32.2	29.7	31.2
Sm	6.62	7 54	6.92	7 33	6 97	6 37	6.81
En	1 97	2.26	2.03	2.20	2.11	1.98	2.04
Gd	5 48	6.28	5 77	6 22	6.08	5 65	5 71
Tb	0.75	0.86	0.79	0.84	0.85	0.80	0.81
Dv	4.14	4.65	4.25	4.52	4.45	4.37	4.31
Ho	0.73	0.83	0.79	0.78	0.79	0.77	0.77
Er	1.75	2.02	1.83	1.87	1.84	1.83	1.87
Tm	0.24	0.28	0.25	0.26	0.25	0.24	0.24
Yb	1.36	1.62	1.39	1.49	1.42	1.42	1.39
Lu	0.19	0.23	0.19	0.22	0.21	0.20	0.19
Y	18.6	20.0	19.5	20.5	19.0	19.0	18.6

Таблица Содержания петрогенных оксидов (мас. %) и редких элементов (г/т) в гавайитах плато Хэвэн Зулу Урийн Сарьдаг

Примечание. Петрогенные оксиды определялись в Института геохимии СО РАН методом XRF, разделение железа - методом титрования (аналитики: Климова А.К., Коваль Л.П.). Содержания редких элементов определялись методом ICP-MS (аналитики: Чувашова Л.А., Смирнова Е.В., Ложкин В.И.).

Беличенко В.Г., Резницкий Л.З., Гелетий Н.К., Бараш И.Г. Тувино-Монгольский массив (к проблеме микроконтинентов Палеоазиатского океана) // Геология и геофизика, 2003. Т. 44. № 6. С. 554-565.

Гарваа Д., Энхээ Д., Тумур Б. и др. Отчет по проведению геолого-съемочных работ масштаба 1:200000. Листы М-57-V, VI, XI, XII. Улан-Батор, 1998. 295 с.

Демонтерова Е.И., Иванов А.В., Рассказов С.В. и др. Литосферный контроль позднекайнозойского магматизма на границе Тувино-Монгольского массива, Прихубсугулье, Северная Монголия // Петрология, 2007. Т. 15. № 1. С. 93-110.

Рассказов С.В., Саранина Е.В., Демонтерова Е.И. и др. Мантийные компоненты позднекайнозойских вулканических пород Восточного Саяна (по изотопам Pb, Sr и Nd) // Геология и геофизика, 2002. Т. 43. № 12. С.1065-1079.

Albarede F. How deep do common basaltic magmas from and differentiate // J. Geophys. Res., 1992, V. 97, № B7. P. 10997-11009.

Dixon E., Clague D.A., Wallace P., Poreda R. Volatiles in Alkalic Basalts from the North Arch Volcanic Field, Hawaii: Extensive Degassing of Deep Submarine-erupted Alkalic Series Lavas // J. Petrology, 1997. V. 38. № 7. P. 911-939.

Ivanov A.V., Demonterova E.I. Lithospheric and sublithospheric sources for Miocene basaltic volcanism in Hovsgol rift, Northern Mongolia // Intern. J. Earth Sci., 2009. submitted.

LeBas M.J., LeMaitre R.W., Streckeisen A., Zanettin B. A chemical classification of volcanic rocks based on the total alkalisilica diagram // J. Petrology, 1986. V. 27. P. 745–750.

Nimis P.A., Ulmer P. Clinopyroxene geobarometry of magmatic rocks. Part 1: an expanded structural geobarometer for anhydrous and hydrous, basic and ultrabasic systems // Contrib. Mineral. Petrol., 1998. V. 133. № 1-2. P. 122-135.

Putirka K. Mantle potential temperatures at Hawaii, Iceland, and the mid-ocean ridge system, as inferred from olivine phenocrysts: Evidence for thermally driven mantle plumes // Geochemistry, Geophysics, Geosystems. An electronic journal of the Earth Sciences, 2005. V. 6. № 5. 14 p. Q05L08, doi:10.1029/2005GC000915.

Sun S.S., McDonough W.F. Chemical and isotopic systematics of oceanic basalts: implication for mantle composition and processes // Magmatism in the Ocean Basins. Geological Society special publication № 2. Blackwell Scientific Publications, 1989. P. 313-346.