Совместные геофизические и геохимические работы на гидротермальных объектах вулкана Баранского, о. Итуруп

Панин Г.Л.¹, Котенко Т.А.², Коханова С.П.³ Joint geophysical and geochemical studies of hydrothermal objects of Baransky volcano, Iturup Island

Panin G.L., Kotenko T.A., Kokhanova S.P.

¹ Институт нефтегазовой геологии и геофизики СО РАН, г. Новосибирск; e-mail: ra9odd@gmail.com

² Институт вулканологии и сейсмологии ДВО РАН, г. Петропавловск-Камчатский; e-mail: sinarka2017@mail.ru

³ Институт геологии и минералогии СО РАН, г. Новосибирск

Приводятся результаты электротомографии на постоянном токе для источников Голубые озера и источников в русле руч. Старозаводской (вулкан Баранского, о. Итуруп). Установлены каналы, подводящие высокоминерализованный флюид к объектам, и их конфигурация. Для Голубых озер питание происходит через единый канал на дне верхней воронки.

Введение

Идентификация высоко минерализованных подземных вод во вмещающих породах возможна благодаря характерным для них предельно низким значениям удельного электрического сопротивления (УЭС), контрастным по сравнению с окружающими породами [2, 11]. Данные свойства позволяют визуализировать внутреннее строение гидротермальных объектов и выявить конфигурацию питающих каналов до глубины 20-40 м. Изучение гидротермальных объектов в подобном ключе отрабатывалось на термальных полях вулканов Мутновский, Эбеко, Головнина [напр. 6-8] с использованием комплекса многоэлектродной электроразведки на постоянном токе «Скала-48» с применением установки Шлюмберже. В августе 2012 г. электротомография была выполнена для двух гидротермальных объектов вулкана Баранского, о. Итуруп.

Результаты и их обсуждение

Голубые озера

Возникновение постройки действующего вулкана Баранского относится к позднему плейстоцену [3], последнее извержение зафиксировано в 1951 г. Изучаемые объекты (источники Голубые озера (ГО) в бассейне р. Кипящей и руч. Старозаводской) располагаются на юго-западном склоне вулкана (рис. 1а, врезка).

Рис. 1. Местоположение вулкана Баранского и участков профилирования – а; профили электротомографии: через Голубые озера – б; по руслу руч. Старозаводской – в.

Участки Старозаводской и р. Кипящая [9] приурочены к тектоническим поднятиям, разбитым сетью открытых разломов – структурных элементов вывода парогидротерм на поверхность. На основании геохимического исследования источников и газов [10] установлено, что для Старозаводского поля источником высокотемпературная субнейтральная водно-доминирующая питания является гидротермальная система, проявляющаяся на поверхности в виде разбавленных грунтовыми водами нейтральных теплых источников SO₄-Cl состава, паровых струй, а также водных и водно-грязевых котлов. Для источников и паровых струй р. Кипящая – высокотемпературная близповерхностная ультракислая гидротермальная система, формирующаяся непосредственно в постройке вулкана за счет поглощения магматических газов метеорными водами [5, 10]. Голубые озера – представители редкого типа кипящих вулканических SO₄-Cl вод с pH <1.4 и минерализацией до 8 г/л с высоким дебитом [4, 5, 10]. В августе 2012 г. здесь находились две террасированные воронки, одна под другой, с прозрачной водой бирюзового цвета (рис. 2).

Рис. 2. Источники Голубые озера 9 августа 2012 г. Вид с запада. Фото Панина Г.Л.

Размер верхней воронки составлял 7×11 м, глубина в 1 м от берега была более 3 м и резко увеличивалась к центру. Вода из верхней воронки переливалась в нижнюю, диаметром 5 м и глубиной ~2 м. Сток из нижней воронки формировал горячий ручей, принимающий дополнительно с левого борта холодную разгрузку. Состав и температура воды в воронках были очень близки (таблица, ГО1 и ГО2), соответствовали сульфатно-хлоридному-кальций-натриевому типу с высоким содержанием железа. Из микроэлементов наиболее значимы цинк и мышьяк. Те же закономерности наблюдаются в проанализированных поровых растворах из донных осадков (таблица, ГО1/1 и ГО2/1).

i worningw.	worman rene repare stremental à dynamet entitent participan byintaina bapanetere (mi/n)														
Проба	T°C	рН	Na	Mg	S	Κ	Ca	Cr	Mn	Fe	Zn	As	Rb	Sr	
ГО1	98.7	0.49	154	40	989	51	162	0.032	2.2	58	0.37	1.41	0.13	0.51	
ГО2	98.5	1.3	145	38	893	50	197	0.047	4.4	56	0.5	1.46	0.13	0.5	
ГО1/1			119	32	764	41	173	0.027	1.72	45	0.47	1.39	0.11	0.43	
ГО2/1			100	27	627	34	165	0.037	1.5	40	1.14	0.95	0.085	0.4	

Таблица. Некоторые элементы в вулканогенных растворах вулкана Баранского (мг/л)

Профиль длиной 235 м с шагом между электродами 5 м (рис. 1б) вверху проходил по руслу правого притока р. Кипящей, в центре – между воронок Голубых озер (ГО), в нижней части – вблизи русла разгрузки с ГО. Получены величины УЭС от 0 до >1000 Ом м (рис. 3).

Рис. 3. Профиль электротомографии через Голубые озера.

Область минимальных значений УЭС в центральной части разреза соответствует единому резервуару под ГО глубиной до 10-15 м. Этим объясняются почти идентичные физико-химические параметры воды. Питающий канал один и расположен под верхней воронкой, являясь частью крупного (более 60 м протяженностью) низкоомного объекта, корневая часть которого находится за пределами глубины зондирования. Этот резервуар соединен с другим участком термальной разгрузки в русле р. Кипящей выше ГО. Постоянная локализация источников ГО, вероятно, сохраняется за счет блокирования потока окружающими неизмененными монолитными породами (УЭС >400 Ом м в диапазонах 90-110 м и 150-190 м на профиле (рис. 3)). Низкоомный объект в нижней части профиля (180-220 м) расположен под руслом горячего ручья, стекающего из ГО. Его конфигурация до конца не вскрыта, так как глубины более 10 м находятся за пределами границы зондирования. Является ли он самостоятельным объектом с глубинной питающей зоной или создан подрусловой фильтрацией, неясно. Максимальные расчетные значения минерализации рассола (М, г/л) могут достигать в пределах разреза 80-90 г/л (УЭС ≤0.1 Ом⋅м) согласно формуле для свободных подземных вод [11]:

$$y \Rightarrow C = 8.4 / M.$$

Старозаводское поле

Профиль выполнен вдоль русла руч. Старозаводской (рис. 1в). Распределение УЭС представлено на рис. 4, диапазон значений значительно меньше, чем на участке ГО, и варьирует от 0.15 до 120 Ом м.

Рис. 4. Профиль электротомографии вдоль руч. Старозаводской.

Предположительно низкоомные аномалии приурочены к участкам сильного гидротермального изменения пород с соответствующим снижением характерных значений УЭС. В русле, выше уреза воды, на участке зондирования находятся малодебитные (0.5-1 л/с) сульфатные источники с минерализацией ~1 г/л, pH 2-3.5 и температурой 60-95 °C, а также небольшие грязевые котлы. На геоэлектрическом разрезе выявлена одна корневая структура в центре, распространяющаяся на глубину более 40 м. В краевых частях разреза уменьшения глубины зондирования не позволяют определить наличие подводящих каналов. Для всех малоглубинных (15-20 м) флюидонасыщенных линз наблюдаются более высокие максимальные значения УЭС, чем для участка ГО, соответственно, меньшая расчетная минерализация – 25-60 г/л.

Выводы

Представленные результаты демонстрируют возможности междисциплинарных исследований в задачах поиска путей транспорта вещества близ поверхности гидротермальных объектов. Новые данные об их структуре помогли составить представление о зональности процессов газо-гидротермальной разгрузки в верхней части разреза на глубинах 5-40 м. Для Голубых озер химическое совпадение составов подтверждается общим каналом транспорта по данным электротомографии. Все данные электротомографии получены с использованием простых установок – Шлюмберже, более подробно анализ существующих типов расстановок описан в [1]. Для увеличения глубинности и разрешающей способности подобных объектов авторы рекомендуют использование прямой и обратной трехэлектродной установки.

Исследование выполнено при финансовой поддержке гранта РНФ № 22-27-00618, https://rscf.ru/project/22-27-00618/.

Список литературы

- 1. *Балков Е.В., Панин Г.Л., Манштейн Ю.А. и др.* Электротомография: аппаратура, методика и опыт применения // Геофизика. 2012. № 6. С. 54-63.
- 2. *Бобачев А.А., Горбунов А.А.* Двумерная электроразведка методом сопротивлений и вызванной поляризации: аппаратура, методики, программное обеспечение // Разведка и охрана недр. 2005. № 12. С. 52-54.
- 3. Горшков Г.С. Вулканизм Курильской островной дуги. М.: Наука, 1967. 288 с.
- 4. Знаменский В.С., Никитина И.Б. Гидротермы центральной части острова Итуруп (Курильские о-ва) // Вулканология и сейсмология. 1985. № 5. С. 44-65.
- 5. *Калачева Е.Г., Таран Ю.А., Котенко Т.А. и др.* Ультракислые сульфатно-хлоридные воды вулкана Баранского (о. Итуруп, Курильские о-ва). Состав и вынос магматических и породообразующих компонентов // Вулканология и сейсмология. 2022. № 5. С. 31-48. https://doi.org/10.31857/S0203030622050054
- 6. Котенко Т.А., Панин Г.Л., Балков Е.В., Фадеев Д.И. Применение малоглубинной электроразведки для изучения гидротермальных объектов вулкана Эбеко (о-в Парамушир) // Вестник ДВО РАН. 2018. № 2. С. 101-109.
- 7. *Манштейн Ю.А., Бортникова С.Б., Манштейн А.К. и др.* Особенности строения проводящих каналов термальных источников вулкана Мутновский (Южная Камчатка) // Доклады АН. Геофизика. 2008. Т. 423. № 3. С. 383-388.
- 8. Панин Г.Л., Гора М.П., Бортникова С.П., Шевко Е.П. Подповерхностная структура Северо-Восточного фумарольного поля вулкана Эбеко (о. Парамушир) по данным геоэлектрических и геохимических исследований // Тихоокеанская геология. 2015. Т. 34. № 4. С. 67-78.
- 9. *Рычагов С.Н., Главатских С.Ф., Гончаренко О.П. и др.* Температурная и геологогеохимическая модель геотермального месторождения Океанское (о. Итуруп) // Геология рудных месторождений. 1993. № 5. С. 405-418.
- 10. *Таран Ю.А., Знаменский В.С., Юрова Л.М.* Геохимическая модель гидротермальных систем вулкана Баранского (о-в Итуруп, Курильские острова) // Вулканология и сейсмология. 1995. № 4-5. С. 95-115.
- 11. Хмелевской В.К. Электроразведка. М.: Изд-во МГУ, 1984. 421 с.