УДК 551.21/23

ГИДРОТЕРМАЛЬНАЯ СИСТЕМА ВУЛКАНА МЕНДЕЛЕЕВА, О. КУНАШИР, КУРИЛЬСКИЕ ОСТРОВА: ГЕОХИМИЯ И ВЫНОС МАГМАТИЧЕСКИХ КОМПОНЕНТОВ

© 2017 г. Е. Г. Калачева¹, Ю. А. Таран^{1,2}, Т. А. Котенко¹, С. Ингуаджиато³, Е. В. Волошина¹

¹Институт вулканологии и сейсмологии ДВО РАН 683006 Петропавловск-Камчатский, бульвар Пийпа, 9 ²Институт Геофизики Национального университета Мексики, Койоакан Мексика, 04510 Мехико ³Национальный Институт Геофизики и Вулканологии, секция Палермо Италия, 90146 Палермо ¹е-mail: keg@kscnet.ru Поступила в редакцию 28.09.2016 г.

Проведено комплексное геохимическое исследование термальных проявлений постройки и флангов вулкана Менделеева на о. Кунашир в августе–сентябре 2015 г. Показано, что здесь разгружаются три основных типа термальных вод (нейтральные хлоридно-натриевые, кислые хлоридно-сульфатные и кислые сульфатные), с зональностью, характерной для вулкано-гидротермальных систем островных дуг. Спонтанные и сольфатарные газы характеризуются относительно низкими отношениями ³He/⁴He от 5.4Ra до 5.6Ra, δ^{13} C–CO₂ от –4.8‰ до –3.1‰ и изотопно-облегченным углеродом метана (δ^{13} C ≈ –40‰). Газовые и изотопные геотермометры дают сравнительно низкие температуры около 200 °C. Изотопный состав всех типов вод близок к составу локальных метеорных вод. Распределение микрокомпонентов различно для разных типов вод. Изотопный состав растворенного Sr значительно варьирует от 0.7034, как в среднем в породах о. Кунашир, до 0.7052 в береговых источниках, что может быть связано с примесью морской воды. Общий измеренный гидротермальный вынос магматических CI и SO₄ вулкана Менделеева составляет 7.8 т/сут и 11.6 т/сут соответственно. Естественный вынос тепла гидротермальной системой вулкана оценивается в 21 MBт.

DOI: 10.7868/S0203030617050029

ВВЕДЕНИЕ

Летучие компоненты, главным образом, вода и СО₂, являются движущей силой вулканических извержений, при которых в атмосферу за короткое время выносятся миллионы тонн газообразных продуктов. В межэруптивный период многие вулканы (как правило, андезитовые) характеризуются постоянной фумарольной активностью и также выносят значительное количество летучих в атмосферу. Над малоглубинными магматическими очагами некоторых вулканов могут возникать локальные гидротермальные системы, где метеорные воды поглощают вулканические газы, и образующиеся кислые термальные воды разгружаются на склонах или у оснований вулканических построек, вынося магматические хлор и серу в виде хлориди сульфат-ионов. В пределах Курильской островной дуги имеется несколько вулканов с интенсивной газо-гидротермальной деятельностью. Это Эбеко на о. Парамушир, Синарка и Кунтоминтар

на о. Шиашкотан, Палласа на о. Кетой, Ушишир на о. Янкича, несколько вулканов на о-вах Уруп и Итуруп, а также Головнина и Менделеева на о. Кунашир [Мархинин, Стратула, 1977; Таран и др., 1993; Taran, 2009; Kalacheva et al., 2015, 2016]. Характерной особенностью этих вулкано-гидротермальных систем является разгрузка кислых хлоридно-сульфатных (сульфатно-хлоридных) вод, в которых хлор и сера имеют магматическое происхождение, и их гидротермальный вынос должен быть учтен при оценках общего выноса летучих вулканами [Taran, 2009].

С середины прошлого века опубликовано много работ по различным аспектами гидротермальной деятельности вулкана Менделеева. Первое подробное описание его сольфатарных полей и всех известных групп термальных источников приводится в монографии [Мархинин, Стратула, 1977]. Наиболее детальное гео- и гидрохимическое описание района по данным полевых работ 1970-х гг. содержится в коллективной монографии [Лебедев и др., 1980]. Авторами представлен набор расширенных химических анализов термальных вод, а также многочисленные анализы пород с интерпретацией процессов гидротермального минералообразования. Г.Н. Ковалев и Ю.Б. Слезин [1970] оценили естественную тепловую мощность термальных выходов вулкана по данным измерений 1968 г. Геотермальное месторождение "Горячий Пляж", разбуренное на Тихоокеанском фланге вулканической постройки в 1960-х годах, с разной степенью детальности описано в работах [Мархинин, 1958; Дуничев, 1974; Сидоров, 1962; и др.]. Позднее опубликованы работы [Chelnokov, 2004; Chudaev et al., 2008; Жарков, 2014], в которых дается описание многих термопроявлений вулкана и представлен набор не систематизированных данных по изотопному составу вод и микрокомпонентам.

В этой работе мы представляем новые геохимические данные, полученные во время полевых работ 2015 г. для вулкано-гидротермальной системы вулкана Менделеева на о. Кунашир. Новые данные включают изотопные составы воды и углерода CO₂ и CH₄, изотопные отношения гелия, изотопные отношения стронция, а также анализы микроэлементов в водах различных типов.

КРАТКАЯ ХАРАКТЕРИСТИКА РАЙОНА

Вулкан Менделеева (43°59′с.ш., 145°44′в.д., высота 896 м) расположен в 12 км к югу от административного центра острова, пос. Южно-Курильск. Это сложная постройка, включающая три вложенные кальдерно-кратерные депрессии с размерами примерно 6 \times 9 км², 3 \times 3.5 км² и 1 \times 1 км² [Абдурахманов и др., 2004]. Внутри меньшей кальдеры сформирован экструзивный купол дацитового состава с относительной высотой около 400 м. В настоящее время признаков активности на куполе нет. Постройка вулкана сложена андезитовыми и андезито-базальтовыми лавовыми потоками, а фундаментом служат вулканогенные неогеновые образования. По [Абдурахманов и др., 2004] последним известным этапам деятельности вулкана стало формирование воронок взрыва по кольцевым разломам на периферии экструзивного купола, которые маркируются участками измененных пород и действующими сольфатарными полями на отметках от 300 до 500 м над уровнем океана. Современная сольфатарная деятельность сосредоточена на четырех обособленных термальных полях, известных как Северо-западное, Северо-восточное, Восточное и Юго-восточное. На склонах вулкана известны также несколько групп термальных источников. Наиболее многодебитные кислые горячие источники расположены в среднем течении руч. Кислый (Нижнеменделеевские (НМ)) и в долине руч. Докторский (Верхнедокторские (ВД) и Нижнедокторские (НД)) на отметках от 30 м

(НД) до 130 м (НМ) над уровнем океана. У подножия вулкана, в прибрежной полосе, разгружаются несколько групп нейтральных горячих источников: источники и паровые выходы Горячий Пляж на Тихоокеанском побережье и Столбовские и Третьяковские источники на Охотоморском побережье.

Расположение сольфатарных полей и групп источников вулкана представлено на рис. 1. В ходе полевых работ 2015 г. нами были обследованы два наиболее мошных сольфатарных поля Северо-западное (СЗ) и Северо-восточное (СВ) и все группы источников. Поскольку значительных изменений в состоянии полей и большей части источников, по сравнению с приведенными в работах [Мархинин, Стратула, 1977; Лебедев и др., 1980; Жарков, 2014], не произошло, в данной работе их описание не приводится. Единственная группа источников, претерпевшая значительные изменения – это источники Горячий Пляж. Антропогенное воздействие привело к тому, что береговые выходы термальных вод и пара исчезли. Возможно, остались только разгрузки в приливно-отливной зоне, но в ходе полевых работ 2015 г. обнаружить их не удалось.

МЕТОДЫ ИССЛЕДОВАНИЯ

Методы полевого отбора проб воды и газа, используемые в наших работах, описаны в работах [Kalacheva et al., 2015, 2016]. Расход водотоков измерялся измерителем скорости потоков FP311 Global Water.

Аналитические исследования проводились в ведущих научных центрах России, Мексики и Италии. Непоглощенные газы в ампулах Гиггенбаха и в вакунтейнерах анализировались методом газовой хроматографии. Поглощенные щелочью СО₂, HCl и серные газы анализировались методами мокрой химии по методике, представленной в работе [Giggenbach, Goguel, 1989]. Аналитические ошибки в обоих методах не превышали 5%. Анализы проводились в Институте вулканологии и сейсмологии ДВО РАН (ИВиС ДВО РАН) и в Институте Геофизики Национального Университета Мексики (UNAM). Изотопный состав углерода СО₂ и CH₄ проводился в UNAM на масс-спектрометре Finnigan Delta Plus XP, связанным с газовым хроматографом для разделения СО₂ и СН₄ на капиллярной колонке Porabond Plot (60 m., ID0.32 mm) с точностью до 0.2‰ (относительно стандарта PDB). Изотопы гелия и отношения Не/Ne анализировались в Национальном Институте Геофизики и Вулканологии (Италия, Палермо), используя статический вакуумный масс-спектрометр VG-5400 TFT, VG Isotopes. Отношения ³Не/⁴Не были откорректированы на загрязнение воздухом на основе различия между He/Ne в воздухе и в пробе по

методу, предложенному в работе [Sano, Wakita, 1985], с ошибкой, как правило, меньше 1%.

Изотопный состав воды (δ^{18} О и δ D), включая конденсаты фумарольных газов, проанализирован в ИВиС ДВО РАН на приборе Los Gatos (ИК-спектрометрия). Погрешность определения микроэлементов составляет ±5%, изотопного состава ±0.2‰ для δ^{18} O и ±1‰ для δ D (относительно стандарта V-SMOW). Изотопный состав стронция (⁸⁷Sr/⁸⁶Sr) был проанализирован в ГИН РАН (г. Москва) на масс-спектрометре МАТ-260 в двухленточном режиме после упаривания образца и обогащения стронция на ионообменной колонке. Измерения стандарта NBS-SRM987 составили 0.70985±5.

Определение концентраций основных катионов и анионов (Na, K, Ca, Mg, Cl, SO₄) в водных пробах выполнялось в ИВиС ДВО РАН на ионном хроматографе Metrohm 883. Анализы микроэлементов методом ICP-MS (Agilent 7500 CE) выполнялись в ИГЕМ РАН (г. Москва).

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Координаты всех опробованных в 2015 г. сольфатар, термальных и холодных источников, речных вод, данные полевых измерений, изотопный состав и основные типы вод представлены в таблице 1; расположение точек опробования показаны на рис. 1.

Геохимия газов

В газах (табл. 2) сольфатарных полей, включая Верхнеменделеевские источники (см. рис. 1), преобладает СО₂, второй по концентрации компонент – H_2S . Откорректированные на присутствие воздуха в пробах гелиевые отношения во всех опробованных термальных выходах очень близки, от 5.38Ra до 5.63Ra, где Ra – воздушное отношение 1.4×10^{-6} . Эти величины ниже, чем величины ³He/⁴He в газах вулканов и гидротермальных систем о. Итуруп – 6.6Ra для Баранского и 7.6Ra для Кудрявый [Таран и др., 1995; Taran, 2009], однако они находятся в интервале известных значений для большинства вулканов зон субдукции [Hilton et al., 2002]. Индикаторное отношение $CO_2/{}^{3}He$, которое для флюидов верхней мантии принимается равным $(2 \pm 1) \times 10^9$, в газах вулкана Менделеева находится в интервале от 0.7×10^{10} до 9×10^{10} , типичном для газов зон субдукции [Hilton et al., 2002], что указывает на дополнительные, помимо мантии, источники углерода в газах, такие, как кора и подвигающаяся плита. Изотопный состав углерода СО₂ отличается в пробах со склонов вулкана и в газах источников на флангах – в газах Столбовских и Третьяковских источников углерод примерно на 1.5% облегчен по сравнению с СО₂ сольфатар и газа

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2017

Верхнеменделеевских источников. Углерод метана имеет одинаковый изотопный состав в газах источников и сольфатар, но метан в них существенно изотопно облегчен по сравнению с метаном высокотемпературных гидротермальных систем Камчатки, где он, как показано в работе [Таран, 1988], редко бывает ниже -30%.

Зная химический состав газа, можно оценить температуры равновесия, которые могут быть близки к температурам резервуаров, питающих поверхностные термопроявления. Газовый H₂/Ar геотермометр Гиггенбаха [Giggenbach, 1991]:

$$t \,^{\circ}\mathrm{C} \,(\mathrm{H}_2 - \mathrm{Ar}) = 70(2.5 + \lg(\mathrm{H}_2 / \mathrm{Ar}))$$
(1)

использует отношение концентраций газов с очень близкими коэффициентами растворимости в воде и поэтому не предполагает знания начальной концентрации растворенных газов в воде источников ("газовый фактор"). Однако величину газового фактора можно оценить методом, предложенным в работе [Тагап, 2005], предполагая, что аргон в воде источников – это аргон из метеорной воды, насыщенной воздухом, составляющей почти 100% от всей воды источников. В этом случае газосодержание определяется простой формулой:

Xg (моль/кг) =
$$0.0015/C_{Ar}$$
, (2)

где концентрация аргона, C_{Ar} , в объемных процентах. Зная газосодержание, можно рассчитать концентрации растворенных газов в термальной воде до выхода на поверхность и оценить температуры равновесия, используя другие геотермометры. Отметим, что газосодержание паровых струй измеряется в процессе отбора и анализа. Водородный геотермометр Гиггенбаха предполагает, что окислительно-восстановительная обстановка в водном резервуаре контролируется равновесием между Fe-содержащими минералами и водой ("породный" буфер Гиггенбаха) [Giggenbach, 1987]. Однако в резервуарах с кислой водой, характерных для многих вулканогидротермальных систем, парциальное давление водорода может контролироваться не породой, а растворенными в воде компонентами серы (SO₂(p-p), H₂S(p-p), HSO₄⁻, HS⁻). В этом случае равновесные концентрации (парциальные давления) водорода будут существенно ниже, и геотермометр Гиггенбаха даст заниженные значения [Giggenbach, 1988; Kalacheva et al., 2016]. Геотермометр ФТ оценивает температуру равновесия растворенных газов для реакции, известной в литературе под названием реакции Фишера–Тропша:

$$CO_2 + 4H_2 = CH_4 + 2H_2O.$$
 (3)

Тип термальных вод	Cl-Na	Cl–Na	Cl-Na	CI–Na	$CI-SO_4$	$CI-SO_4$	$CI-SO_4$	SO_4	SO_4	$CI-SO_4$	SO_4	$CI-SO_4$	$CI-SO_4$	$CI-SO_4$	$CI-SO_4$	$CI-SO_4$	$CI-SO_4$	Cl-Na	CI-Na	CI–Na										
δ ¹⁸ Ο	-9.44	-9.59	-9.56	-9.47	-7.49	н.о.	-8.06	н.о.	-8.40	-5.62	-8.36	-7.94	-7.96	-7.48	н.о.	н.о.	-7.81	-8.24	Н.О.	-8.14	-8.87	Н.О.	Н.О.	н.о.	Н.О.	Н.О.	Н.О.	-10.30	-4.64	
δD	-68.04	-68.73	-68.84	-67.67	-54.95	Н.О	-56.42	Н.0	-57.69	-50.37	-59.47	-54.62	-54.82	-54.57	0.Н	Н.О	-55.00	-56.81	н.0	-56.54	-56.88	Н.О	Н.О	н.0	Н.О	Н.О	Н.О	-68.63	-48.94	
Место отбора	Столбовские ист.	Столбовские ист.	Третьяковский ист. (основной)	Третьяковские ист. (верхний)	НМ источники	НМ источники	НМ источники	ВМ-источники	ВМ-источники	СЗФП (котел)	ист. руч.Кедровый (СЗФП)	НД источники	НД источники	ВД ист. (ист. Колодец)	термальное озерцо (Фауста)	ВД источники (Трещинный)	ВД источники (Ярозитовый)	НД- скв. 1	НД -скв. 3	НД -скв. 4 Дракон	скважина на холодную воду	руч. Змеиный (устье)	руч. Валентины (ниже ист.)	р. Лесная	р.Лесная (устье)	руч. Лечебный (устье)	р. Четверякова (устье)	Фумарола СВ-поле	Фумарола "Спокойная" СЗ-поле	
Проводи- мость, µS	3390	3210	3790	3760	8000	4570	6060	3890	2160	1670	1991	3500	4010	7970	4800	5060	6580	5260	5200	4320	150	685	288	184	419	95	239			
J∘ 1	78.0	39.3	73.6	95.7	81.8	46.4	70.8	94.7	9.66	9.96	56.6	47.7	57.0	87.3	36.5	44.6	52.0	70.8	66.0	6.09	12.5	19.7	15.4	10.9	14.1	14.5	13	98.0	98.0	
Eh	63	5	55	19	Н.О.	480	315	195	377	140	4	360	395	257	493	495	502	-80	-83	-49	170	-44	-34	75	228	206	385	н.о.	Н.О.	
Hd	6.09	6.90	6.21	7.24	2.28	2.45	2.19	2.37	2.35	1.97	2.09	3.50	4.10	2.13	4.18	2.53	2.91	7.10	7.29	7.45	6.60	7.78	7.60	8.80	5.40	6.5	4.24	Н.О	Н.О	
Дата отбора	9 сен.	9 сен.	9 сен.	9 сен.	18 сен.	18 сен.	18 сен.	18 сен.	18 сен.	16 сен.	16 сен.	17 сен.	17 сен.	17 сен.	17 сен.	17 сен.	17 сен.	17 сен.	17 сен.	17 сен.	16 сен.	9 сен.	9 сен.	16 сен.	18 сен.	21 сен.	21 сен.	18 сен.	16 сен.	
Долгота	145°41.00′	145°40.99′	145°39.25′	145°39.35′	145°46.09′	145°46.05'	145°46.05′	145°45.40′	145°45.39′	145°43.72′	145°43.69′	145°47.06′	145°47.33′	145°42.41′	145°46.41′	145°46.42′	145°46.43′	145°47.46′	145°47.30′	145°47.46′	145°46.93′	145°40.47′	145°39.22′	145°43.08′	145°48.55′	145°47.82′	145°47.28′	145°44.94′	145°43.73′	илось.
Широта	44°0.42′	44°0.43'	43°59.15′	43°59.10'	43°59.98′	43°59.89′	43°59.89′	43°59.49′	43°59.47′	43°59.27′	43°59.29′	44°0.19′	$44^{\circ}0.10'$	$44^{\circ}0.06'$	43°59.99′	43°59.96′	44°0.00′	44°0.11′	$44^{\circ}0.10'$	$44^{\circ}0.10'$	44°1.01′	44°0.67′	43°59.16′	43°59.67'	44°0.81'	43°59.42′	43°58.02′	43°59.06′	43°59.25′	- не определ
Шифр (рис. 1)	C _T 1	CT2	Tp1	Tp2	HMI	HM2	HM3	BM1	BM2	C31	C32	HД1	НД2	BД1	В Д2	BД3	BД4	C1	C2	C3	C4	pl	p2	p3	p4	p5	p6	Φ1	Φ2	Примечание.н.о.

Таблица 1. Полевые данные, изотопный состав воды и места отбора проб в районе вулкана Менделеева в 2015 г.

КАЛАЧЕВА и др.

	Источник СВ поле	Столбовские	Третьяковские	Сольфатара СВ поле	Сольфатара СЗ поле
№ пробы	BM2	Ст1	Tp1	Φ1	Ф2
CO_2	94.64	29.1	9.1	89.67	81.0
$H_2 \tilde{S}$	_	_	_	9.15	14.5
He	0.0018	0.0005	0.0020	0.0011	0.00094
H ₂	0.45	0.00	0.019	0.0010	0.007
N_2	4.44	56.0	79.1	1.09	3.47
O_2	0.07	8.24	10.3	0.023	0.53
Ar	0.045	0.51	0.86	0.007	0.032
CH_4	0.36	5.42	0.75	0.0098	0.265
C_2H_6	н.о.	н.о.	н.о.	0.000058	0.0032
Xg	0.0036	0.0015	0.0033	0.0212	0.0149
³ He/ ⁴ He	5.59	5.63	5.62	н.о.	5.38
He/Ne	24	4.9	8.2	н.о.	10
$CO_2/^3He$	6.7×10^{9}	9.2×10^{10}	4.0×10^{9}	_	1.14×10^{10}
$\delta^{13}C-CO_2$	-3.1	-4.9	-4.8	-3.3	-3.4
$\delta^{13}C-CH_4$	-40.8	-40.0	-41.0	_	-40.9
$t(H_2/Ar)$	231	_	77	195	159
$t(\mathrm{H}_2)$	194	_	137	171	215
<i>t</i> (ΦT)	191	_	113	209	225
t iso	170	193	183	_	175

Таблица 2. Химический (моль %) и изотопный состав газов источников и сольфатар вулкана Менделеева

Примечание. Изотопный состав углерода в промилле относительно стандарта V-PDB; изотопные отношения гелия R относительно воздушного значения Ra = 1.4×10^{-6} . Xg – газосодержание воды источников в моль/кг, рассчитанное для источников по формуле: Xg = 0.0015/Ar(%) [Taran, 2005]. Для сольфатар Xg измерено при отборе пробы. Концентрации аргона скорректированы на содержание воздуха в пробе: Ar_{корр} = Ar_{изм} – O₂/22.4. Температуры рассчитаны по газовым геотермометрам (см. текст) и изотопному равновесию CO₂–CH₄ [Horita, 2001]. Отношения CO₂/³Не для источников рассчитано с учетом концентрации HCO₃⁻. н.о. – не определялось; прочерк – расчет не производился.

При выводе этого геотермометра не делается предположений об окислительно-восстановительной обстановке, но предполагается, что метан химически уравновешен с CO_2 , H_2 и H_2O [Таран, 1988; Taran, Giggenbach, 2003]. В таблице 2 приведены температуры, рассчитанные по ФТ геотермометру для газов, полностью растворенных в воде [Таран, 1988] и по H_2 /Ar геотермометру Гиггенбаха, который не зависит от фазового состояния флюида [Giggenbach, 1991]. Температуры, рассчитанные по ФТ-геотермометру, близки к "водородным" температурам.

Используя данные по изотопному анализу углерода CO_2 и CH_4 , можно оценить температуру изотопного равновесия [Horita, 2001] для тех газовых выходов, в которых проанализирован изотопный состав углерода метана. Вычисленные "изотопные" температуры (170–193 °C, см. табл. 2), в общем, согласуются с температурами по газовым геотермометрам, что довольно редко для системы CO_2-CH_4 в геотермальных газах. Обычно, изотопная пара CO_2-CH_4 показывает температуры равновесия

выше, чем температура химического равновесия [Giggenbach, 1982; Таран, 1988; и др.].

Геохимия термальных вод

Изотопный состав вод. Изотопный состав опробованных вод и конденсата фумарольных газов вулкана показан в таблице 1. На графике зависимости δD от $\delta^{18}O$ (рис. 2) показано, что большая часть точек группируется вблизи или непосредственно на линии метеорных вод. Только котлы сольфатарных полей вместе с конденсатом фумарольных газов образуют незначительный тренд в сторону составов "андезитовых" вод (магматической воды зон субдукции, прямоугольник АВ на рис. 2) [Таран и др., 1989; Giggenbach, 1992], что может указывать на некоторый вклад магматической воды. Максимальная доля магматической компоненты, как видно на рисунке, может быть не более 20%. Как правило, увеличение доли магматической воды в питании термальных вод и паров сопровождается ростом концентрации хлорид-иона [Taran, Zelenski, 2014].

Рис. 2. Изотопный состав всех типов вод вулкана Менделеева. Показаны также линия метеорных вод $(\delta D = 8\delta^{18}O+10)$ и состав океанической воды (SMOW). Прямоугольник AB соответствует изотопному составу магматической воды зон субдукции. См. текст.

Однако воды котлов и конденсаты, точки для которых лежат на тренде, показанном на диаграмме (см. рис. 2), практически не содержат хлора. Поэтому оба изотопных сдвига – по водороду и кислороду – вероятнее всего связаны с кинетическим фракционированием при кипении [Giggenbach, Stewart, 1982; Таран, 1988]. Вода береговых источников на флангах вулканической постройки (Столбовские и Третьяковские) заметно изотопно облегчена по сравнению с метеорной водой и водой источников на склонах вулкана (см. табл. 1, рис. 2). Это должно быть связано с тем, что область питания для этих вод находится гипсометрически выше, чем для остальных вод. Подобный изотопный состав на этих широтах характерен для поверхностных вод с высотными отметками 700-800 м над уровнем моря, что соответствует предвершинной части вулкана Менделеева. За счет гидравлического градиента эти воды погружаются на относительно большую глубину, где нагреваются и под напором выходят на поверхность в береговой зоне. Поскольку область питания выше 700 м имеет на острове ограниченное распространение, то и разгрузка термальных вод не отличается большими расходами.

<u>Типизация термальных вод</u>. В районе вулкана Менделеева в 2015 г. нами отобрано более 40 проб воды из всех групп источников, сольфатарных полей, скважин и холодных водотоков. Представительные анализы макрокомпонентов показаны в таблице 3. Воды термальных источников относятся к трем гидрохимическим типам, характерным для подобных вулкано-гидротермальных систем [Иванов, 1960; Giggenbach et al., 1990; Kalacheva et al., 2015].

1. Верхнеменделеевские источники (см. рис. 1) и источники в нижней части Северо-восточного сольфатарного поля представляют собой кислые сульфатные воды (SO₄) с рH < 2.5, температурой до 100 °С и с пестрым катионным составом, в которых сульфат образован за счет окисления сероводорода. Характерной особенностью их являются низкие концентрации Cl-иона. Преобладающими катионами являются Са, Al и Fe (см. табл. 3, табл. 4). Минерализация вод от 1 до 3-4 г/л.

2. На более низких гипсометрических отметках, от 100 м и ниже, разгружаются кислые хлоридно-сульфатные (Cl–SO₄) натриевые воды с pH 2.0–4.0, температурой 70–90 °C и минерализацией 4–5 г/л. Это Нижнеменделеевские, Верхне- и Нижнедокторские источники (см. рис. 1). В них также отмечаются высокие содержания Al и Fe (см. табл. 4).

3. У подножия вулкана в береговой зоне разгружаются хлоридно-натриевые (Na–Cl) воды с минерализацией 3–4 г/л, pH 6.2–7.4 и температурой до 100 °C. На Охотоморском побережье к ним относятся Столбовские и Третьяковские источники (см. рис. 1). На Тихоокеанском побережье к этому типу вод относились также источники Горячий Пляж с более высокой минерализацией [Мархинин, Стратула, 1977; Барабанов, 1976].

	Ст1	Tn2	HM1	RM1	BM2	В П1	ΗΠ1	C2	C_{2}	nl	n/	n5	n6
	CII	1p2	111111	DIVII	DIVIZ	Ъдт	пдт	02	0.32	pı	рт	p5	po
мг/л													
t °C	78	95.7	81.8	94.7	99.6	87.3	47.7	66	56.6	19.7	14.1	14.5	13
pН	6.05	7.24	2.28	2.37	2.35	2.13	3.5	7.29	2.09	7.78	5.4	6.5	4.24
SiO ₂	169	221	377	347	178	364	244	249	268	62	77	35	58
Na^+	684	883	398	94	16.6	403	304	877	45	125	43	9.8	13.0
\mathbf{K}^+	46	83	39	7.9	2.0	48	24.5	70	5.4	8.6	4.6	1.1	1.2
Ca^+	112	59	142	29	16.2	78	87	156	70	25	17.2	5.2	12.6
Mg^{2+}	10	1.5	52	9.6	10.0	46	30	14	23	5.3	5.4	1.7	3.4
F^{-}	0.91	0.43	2.5	<ПО	<ПО	3.1	1.7	2.5	<ПО	0.15	0.1	0.1	0.1
Cl-	1023	1430	1230	260	10.3	1512	814	1200	10.5	183	80	13.4	17.9
SO_{4}^{2-}	431	59	1085	1799	689	975	433	309	965	65	71	17.5	103
HCO_3^-	240	120						н.о.		39	13	10	6
В	3.0	3.7	13.9	0.4	0.0	18.9	10.0	19.9	0.9	0.4	0.6	0.1	0.1
Fe	0.03	0.40	54.0	118	16.6	52.0	34	0.90	4.8	0.02	0.38	0.01	0.36
Al	0.03	0.21	26.0	144	34	21.6	31	<ПО	20.0	0.03	1.50	0.05	3.10
						мкг/Ј	Т						
Sr	1067	428	155	45	31	179	164	874	222	175	63	21	53
Ba	88	14	106	12	33	125	36	155	39	21	11	3.8	17
Rb	131	295	162	4.2	2.3	199	108	184	11	20	11	1.4	1.6
Li	368	607	404	11	3.4	502	300	698	11	53	28	0.97	0.63
Cs	45	132	59	1.6	0.74	73	39	71	2.0	6.3	3.2	0.089	0.11

Таблица 3. Представительные составы основных типов термальных источников и речных вод вулкана Менделеева

Примечание. <ПО – ниже предела обнаружения. н.о. – не определялось.

Скважинами, пробуренными на склонах вулкана, вскрыты два типа термальных вод. По данным [Лебедев и др., 1980] разведочными скважинами в районе Верхнедокторских и Нижнеменделеевских источников на глубинах от 80 до 130 м были вскрыты кислые (рН 1.8–2.3) хлоридно-сульфатные натриевые воды с минерализацией 6.5–7.2 г/л с температурой на забое до 128 °С. Вскоре после бурения скважины перестали изливаться и уровень вод понизился. В настоящее время этих скважин не существует.

Скважины, пробуренные в районе Нижнедокторских источников, на отметках примерно 30 м над уровнем моря выводят на поверхность слабощелочные (pH 7.7) хлоридные натриевые воды минерализацией до 3 г/л. Температура воды в открытых скважинах на изливе 70–80 °С. Две скважины Верхнедокторского участка выводят на поверхность пароводяную смесь с глубины около 1000 м. Температура на забое скважин, согласно работе [Chelnokov, 2004], около 240 °С. Вода, вскрытая этими глубокими скважинами, имеет химический состав, близкий к составам воды скважин Горячего Пляжа, пробуренных в конце 1960-х годов прошлого века [Лебедев и др., 1980] и сейчас уже не действующих.

Отношения Cl/SO₄ и Cl/B в термальных водах. На графике SO₄-Cl (рис. 3а) практически для всех групп кислых термальных источников, за исключением бессточных и малодебитных котлов сольфатарных полей, наблюдается хорошая положительная корреляция. Точки для Верхнедокторских, Нижнедокторских и Нижнеменделеевских хлоридно-сульфатных кислых источников ложатся на один тренд. На эту же прямую ложатся также точки для кислых вод, вскрытых неглубокими скважинами в районе Верхнедокторских и Нижнеменделеевских источников [Лебедев и др., 1980]. Для этих вод наблюдается также хорошая положительная корреляция между главными анионами (SO₄ и Cl) и температурой (см. рис. 4а, 4б). Подобные корреляции отмечены и для гидротермальных систем других Курильских вулканов [Kalacheva et al., 2015, 2016]. Такой тип положительной корреляции SO₄ и Cl между собой и температурой свидетельствует

КАЛАЧЕВА и др.

	Ст1	P3	Tp2	HM1	BM1	BM2	Сз2	ВД1	НД1	C2	p4	p5	p6
Be	0.045	<ПО	0.057	0.77	0.38	0.11	<ПО	1.2	0.66	0.005	<ПО	<ПО	<ПО
Zr	0.16	0.084	0.74	0.19	0.18	0.17	0.34	0.11	<ПО	<ПО	0.073	0.016	0.15
Nb	0.48	0.33	0.27	<ПО	0.17	0.093	0.003	<ПО	<ПО	<ПО	0.002	<ПО	0.22
Мо	16	3.8	2.6	0.16	3.6	1.3	0.11	0.38	0.23	2.4	0.21	0.11	12
Cd	0.37	0.28	0.085	15.87	1.0	0.19	0.080	21	25	0.53	1.2	0.050	0.30
In	0.009	0.004	0.005	1.9	0.13	0.018	0.009	2.3	4.9	0.002	0.017	0.002	0.004
Sb	0.42	0.14	11	1.5	0.13	0.076	0.12	4.2	0.14	3.9	0.23	0.041	0.18
Te	0.16	0.13	0.087	<ПО	0.49	0.10	0.009	0.006	<ПО	<ПО	<ПО	<ПО	0.11
Y	0.051	0.032	0.20	56	31	12	7.1	52	46	0.11	2.9	0.46	2.0
ΣΡ3Э	0.104	0.078	0.281	51.36	38.96	15.07	13.73	43.96	38.46	0.123	2.89	0.498	3.40
Pr	0.003	0.006	0.012	0.98	1.2	0.38	0.55	0.66	0.56	0.006	0.081	0.023	0.14
Hf	0.11	0.059	0.042	0.027	0.042	0.009	<ПО	0.025	0.012	<ПО	<ПО	<ПО	0.036
Та	0.061	0.084	0.085	0.019	0.063	0.053	<ПО	0.001	<ПО	0.006	0.036	<ПО	0.085
W	5.3	1.3	14	<ПО	0.72	0.47	<ПО	<ПО	<ПО	2.1	<ПО	<ПО	0.88
Au	0.61	0.079	0.39	<ПО	0.026	0.052	<ПО	0.025	<ПО	<ПО	<ПО	<ПО	0.13
T1	0.19	0.019	1.3	7.6	0.067	<ПО	<ПО	8.6	6.8	0.066	0.29	0.009	0.57
Pb	0.53	0.14	0.28	158	2.7	0.97	2.2	158	2.8	0.63	1.9	2.0	1.2
Bi	0.036	0.010	0.006	0.003	<ПО	<ПО	0.001	0.002	<ПО	<ПО	<ПО	<ПО	0.023
Th	0.018	0.015	0.009	0.36	0.90	0.074	0.19	0.25	0.12	<ПО	<ПО	0.004	<ПО
U	0.001	0.003	0.001	0.22	0.19	0.015	0.041	0.20	0.051	<ПО	0.009	0.003	0.018
Р	40	67	27	101	431	157	137	101	69	9.15	<ПО	<ПО	22
Sc	<ПО	<ПО	0.00	65	79	17	4.8	58	39	0.05	0.54	<ПО	0.45
Ti	1.7	1.4	5.4	2.4	22	3.7	1.4	1.4	0.08	<ПО	0.41	0.73	3.2
V	0.21	1.6	0.64	181	531	168	37	140	112	0.03	0.68	1.0	1.1
Cr	0.80	0.64	0.78	4.0	32	3.7	1.2	1.9	4.3	0.63	0.81	1.0	0.88
Mn	480	6.3	127	8871	1063	585	661	9778	5186	837	443	1.1	86
Со	0.43	<ПО	0.10	1.7	27	2.0	0.25	0.050	0.41	<ПО	1.3	0.003	1.1
Ni	2.2	0.16	1.3	0.98	13	5.1	0.070	2.7	0.22	0.007	1.5	7.0	1.5
Cu	0.46	0.56	0.31	0.88	127	3.8	0.26	0.12	0.059	<ПО	1.6	2.9	2.2
Zn	0.45	<ПО	25	1496	390	48	15	2490	2729	0.12	76	1.2	11
Ga	0.02	<ПО	0.23	3.2	11	1.1	3.2	1.4	1.9	<ПО	<ПО	<ПО	0.020
Re	0.002	0.001	0.001	0.005	0.007	0.004	0.001	0.005	0.006	<ПО	<ПО	<ПО	0.008
Ru	0.018	0.018	0.036	0.000	0.000	0.000	0.051	0.017	0.034	0.034	0.035	0.035	0.014
Pt	0.33	0.18	0.23	0.19	<ПО	<ПО	0.26	0.013	0.16	0.15	0.041	0.069	<ПО
Ge	14	1.1	11	7.2	1.4	0.48	1.6	8.4	6.0	13	0.65	0.050	0.000
As	11	1.4	240	1130	26	2.1	1.9	1519	629	803	4.6	1.3	0.052
Se	2.4	<ПО	12	3.0	1.4	2.0	8.3	1.5	5.3	<ПО	<ПО	2.3	4.0

Таблица 4. Представительные составы микрокомпонентов в термальных источниках и речных водах вулкана Менделеева (мгк/л)

Примечание. <ПО – ниже предела обнаружения. ΣРЗЭ – сумма редкоземельных элементов.

о едином источнике питания для всех кислых вод гидротермальной системы вулкана с последующим смешением глубинной термальной воды с грунтовыми водами в близповерхностных условиях. Эти воды отличаются также сравнительно высоким содержанием бора (среднее весовое отношение Cl/B \sim 75) и положительной корреляцией его с Cl-ионом (см. рис. 36).

Столбовские и Третьяковские источники, разгружающиеся на Охотоморском побережье, имеют зону водного питания, отличную от зоны питания для источников северо-восточного сектора на склонах вулкана. Из данных по изотопному составу следует, что зона водного питания этих береговых источников, как уже указывалось, находится на высоких гипсометрических уровнях. Отношение Cl/SO₄ в водах Столбовских и Третьяковских

Рис. 3. Соотношение Cl–SO₄ (а) и Cl–B (б) для различных типов термальных вод вулкана Менделеева. Литературные данные для Cl–Na вод включают составы Столбовских и Третьяковских источников, а также источников Горячего Пляжа из Отчета [Барабанов, 1976].

источников гораздо выше, чем в кислых водах. Для них также характерно высокое отношение $Cl/B \sim 400$ (см. табл. 3), что могло бы свидетельствовать о некоторой доле морской воды (для морских

 $C1/B \sim 4000$). Однако, морская вода должна утяжелять изотопный состав, в то время как вода этих источников примерно на 10‰ по δD легче, чем вода термальных источников северо-восточного

ВУЛКАНОЛОГИЯ И СЕЙСМОЛОГИЯ № 5 2017

Рис. 4. Корреляция между главными анионами и температурой отбора для кислых термальных вод в. Менделеева: SO₄ – температура (а) и Cl – температура (б).

сектора. Кроме того, по отношениям Cl/В Столбовские и Третьяковские источники идентичны источникам и скважинам Горячего Пляжа, опробованным в 1960-е годы. Гидрохимические данные по скважинам и источникам Горячего Пляжа собраны в Отчете [Барабанов, 1976]. На графике соотношения В с Cl (рис. 3б) видно, что точки для Столбовских и Третьяковских источников и для источников и скважин Горячего Пляжа ложатся на единый тренд с отношением $Cl/B \sim 400$. Таким образом, можно предположить, что под вулканом Менделеева имеется значительный по размерам гидротермальный резервуар хлоридно-натриевых вод, разгрузка из которого осуществляется как с Тихоокеанской, так и с Охотоморской сторон. Состав воды в этом резервуаре должен соответствовать составу воды из скважин, наименее смешанной с морской водой (с минимальными концентрациями SO₄ и Mg). По данным Отчета [Барабанов, 1976] этим условиям может отвечать скважина 12а, опробованная Р.А. Шуваловым в 1973 г. (в мг/л: Cl – 5514, SO_4 -264, Mg - 3.4, B - 9.2).

Микрокомпоненты. Поведение микроэлементов в водах различных типов хорошо отражает диаграмма, приведенная на рис. 5а, 5б. Коэффициенты распределения элементов между вмещающей породой и водой, *F_i*, определяются как:

$$F_{\rm i} = (C_i/{\rm Na})_{\rm B}/(C_i/{\rm Na})_{\rm II}, \qquad (4)$$

где в числителе отношение концентрации элемента к концентрации натрия в воде, а в знаменателе то же для породы. Для породы взяты средние концентрации микроэлементов в андезитах вулкана из работы [Мартынов и др., 2010]. Данные для элементов, отсутствующие в этой работе, взяты из работы [Войткевич и др., 1990] для среднего андезита. В качестве нормирующего элемента взят натрий, поскольку среди породообразующих элементов при взаимодействии вода-порода он является самым подвижным и широко применяется для построения подобных диаграмм [Peiffer et al., 2011; и др.]. На диаграмме для нейтральных вод (см. рис. 5а) значения коэффициентов распределения упорядочены по их убыванию в водах Столбовских источников. Хорошо видно, что подвижность элементов в водах нейтральных Na-Cl источников (Тр2 и Ст1) и воды из скважины (С2) схожа. Для кислых Cl–SO₄ вод значения коэффициентов распределения также упорядочены по убыванию. И для этих вод в целом характерно схожее распределение (см. рис. 5б) элементов, подтверждающее единый для кислых Cl-SO₄ вод источник питания. Но порядок убывания F, для Cl-SO₄ кислых вод существенно отличается от такового для нейтральных Cl–Na вод. Большинство точек для нагретых паром кислых SO_4 вод (BM1) ложатся возле Fi = 1, то есть близко к линии конгруэнтного (полного) растворения породы. При этом заметно выше единицы ложатся точки для халькофильных элементов (Cu, Zn, As, Mo, Re), что, видимо, связано с образованием сульфидных фаз и последующим их вторичным растворением в кислой воде. Заметно ниже единицы ложатся точки для элементов, которые малоподвижны в измененной породе даже в ультракислой среде (Ti, Zr, Hf, Ag).

Поведение микроэлементов в ультракислых водах изучено слабо. Как правило, отношения концентраций большинства микроэлементов в водах ультракислых кратерных озер близки к их отношениям во вмещающих породах за счет практически полного растворения породы. Однако, для исследуемых кислых Cl–SO₄ растворов это не так. Ограничимся для примера поведением редких щелочей, чьи относительные концентрации показаны на рис. 6. Для сравнения приведены опубликованные данные [Kalacheva et al., 2015, 2016] по другим вулкано-гидротермальным системам Курильских островов. Точки относительных концентраций Li, Rb и Cs практически для всех термальных вод в. Менделеева, как кислых, так и нейтральных, лежат

Рис. 5. Коэффициенты распределения элементов, нормированные на Na для нейтральных (а) и кислых (б) термальных вод вулкана Менделеева. Горизонтальная линия Fi = 1 соответствует полному растворению породы.

в центре треугольника, далеко от состава пород. Только для кислых сульфатных вод в. Менделеева наблюдается тренд в область составов пород. По данным [Kalacheva et al., 2016], составы ультракислых Cl–SO₄ вод Верхне-Юрьевских источников (В-Ю) (см. рис. 6) массива вулкана Эбеко (о. Парамушир) лежат близко к полю составов пород (средних андезито-базальтов и андезитов по [Мартынов и др., 2010]). Точки для кислых вод Cl–SO₄ вулкана

Синарка (Ш) (о. Шиашкотан) занимают промежуточное положение, но существенно ближе к составу пород [Kalacheva et al., 2015]. Составы кислых вод вулкана Менделеева, таким образом, сформированы иным способом, нежели простое растворение вмещающей породы ультракислой смесью конденсата магматического пара и метеорной воды, что выражается также и в общем убывающем тренде поведения коэффициентов распределения

Рис. 6. Соотношение Li-Rb-Cs в термальных водах вулкана Менделеева. Показаны также поля составов для породы, Верхне-Юрьевских источников (В-Ю) и источников о. Шиашкотан (Ш). См. текст.

для этих вод (см. рис. 6б). Можно предположить, что в составе кислых вод Докторских и Нижнеменделеевских источников есть доля более глубоких нейтральных вод, которые вскрыты скважинами и разгружаются у подножия вулкана. Кроме того, часть элементов может переноситься в поверхностные резервуары вулкано-гидротермальных систем магматическими газами. Эти проблемы требуют специального рассмотрения.

<u>Изотопный состав Sr и Ca/Sr отношения в тер-</u> <u>мальных водах</u>. Изотопный состав стронция в природных водах служит хорошим индикатором состава вмещающих пород водных резервуаров [Виноградов, Вакин, 1983; Пампура, Сандимирова, 1991; Peiffer et al., 2011]. В работе [Peiffer et al., 2011] отношения Ca/Sr и ⁸⁷Sr/⁸⁶Sr позволили различить два резервуара гидротермальной системы вулкана

Источник

Столбовские

Третьяковские

Эль Чичон (Мексика): более глубокий в осалочных породах и малоглубинный в вулканических породах. Отношения Ca/Sr в исследуемых нейтральных Cl-Na и кислых Cl-SO₄ существенно различаются, в последних это отношение в 3 раза выше (табл. 5). Согласно Мартынову [Мартынов и др., 2010], голоценовые вулканиты юга о. Кунашир характеризуются значениями ⁸⁷Sr/⁸⁶Sr в интервале 0.7034-0.7036. Только в некоторых образцах средне-миоценовых пород острова отмечены отношения до 0.7048. При этом автор не исключает, что эти породы были частично изменены с участием морской воды. В отличие от данных для термальных вод вулкана Эбеко и о. Шиашкотан [Kalacheva et al., 2015. 2016]. термальные воды вулкана Менделеева лемонстрируют неожиланно пестрый изотопный состав стронция (см. табл. 5): от величин, близких к составу пород, до величин с явным обогащением ралиогенным стронцием. Наиболее обогашены воды береговых источников Столбовских и Третьяковских, что может быть связано с подмешиванием небольшого количества морской воды в приповерхностных условиях, которое не повлияло на изотопный состав воды (δD и $\delta^{18}O$). Долю морской воды, которая изменит начальный изотопный состав стронция до наблюдаемого значения. можно оценить, используя приближенное выражение для изотопного состава стронция смеси [Faure, 1998]:

$$({}^{87}\text{Sr}/{}^{86}\text{Sr})_{\text{mix}} = (1/\text{Sr})_{\text{mix}}[({}^{87}\text{Sr}/{}^{86}\text{Sr})_{\text{sw}}\text{Sr}_{\text{sw}}f_{\text{sw}} + ({}^{87}\text{Sr}/{}^{86}\text{Sr})_{\text{o}}\text{Sr}_{\text{o}}(1 - f_{\text{sw}})],$$
(5)

где индексы "mix", "sw" и "o" относятся, соответственно, к смеси, к значению для морской воды (0.7090) и к начальному отношению 87 Sr/ 86 Sr, которое примем равным 0.7034 — среднее для пород о. Кунашир. Из уравнения следует, что чем меньше концентрация стронция в воде до смешения ее

Sr/Ba

12

31

87Sr/86Sr

0.70518

0.70502

Ca/Sr

101

72

Таблица 5. Концентрации стронция, весовые отношения Ca/Sr и изотопный состав стронция, ⁸⁷Sr/⁸⁶Sr, в источниках вулкана Менделеева

Sr, мкг/л

1067

428

№ пробы

Ст1

Tp2

I Construction of the second s	I I				
Скважина	C2	874	101	5.6	0.70379
Нижнедокторские	НД1	164	158	4.5	0.70443
Верхнедокторские	ВД1	179	436	1.4	0.70479
Нижнеменделеевские	HM1	155	445	1.5	0.70364
С-3 поле	C32	222	56	5.7	0.70345
Скважина 101*		596	141	8,5	
Порода**		207-227	180-400	0.8-3.5	0.7034-36
				1	
			O WOXYO XYO DYYO DYY		

Примечание. Номера проб см. таблицу 1. * – [Chelnokov, 2008]. ** – голоценовые вулканические породы о. Кунашир (Sr в г/т) из работы [Мартынов и др., 2010].

Рис. 7. Диаграмма смешения вод с различными начальными концентрациями стронция (Sr_o, цифры на линиях смешения) с морской водой. Доля морской воды в смеси указана в весовых процентах. Шифры проб внутри символов см. таблицу 1.

с морской водой, тем меньше доля морской воды для достижения определенного отношения в смеси. Например, если с морской водой, в которой стронция около 8 мг/л, смешивается вода с содержанием Sr_o 0.1 мг/л, то достаточно 0.5% морской воды, чтобы в смеси изотопный состав стронция стал 0.7050. При этом содержание хлорид-иона в смеси увеличится примерно на $0.005 \times 20000 = 100$ мг/л, концентрация Sr увеличится до 0.14 мг/л, а изотопный состав смешанной воды изменится меньше, чем на 1‰ по δ D. На диаграмме (рис. 7), построенной на основе уравнения (5) показаны линии смешения вод с разными концентрациями стронция и одинаковым изотопным отношением⁸⁷Sr/86</sup>Sr, равным 0.7034, с морской водой. На рисунке видно, что, если увеличение доли радиогенного стронция связано со смешением с морской водой, то исходные, не смешанные, термальные воды должны различаться по концентрациям стронция. При этом нейтральные Na-Cl воды с высоким содержанием Sr и кислые воды образуют на графике смешения два кластера точек. Однако смешение с морской водой должно приводить не только к увеличению концентрации стронция, но и пропорциональному увеличению концентраций консервативных ионов, таких как хлорид и натрий. Если доля "морского" стронция в воде Третьяковских (Tp2) и Столбовских (Ст1) источников составляет соответственно от около 2% до около 5% (см. рис. 7), то в Третьяковских источниках около 400 мг/л Clиона должно иметь морское происхождение. Для

Столбовских источников эта величина может быть около 1000 мг/л, т.е. почти весь хлор в Столбовских может иметь морское происхождение (см. табл. 3). Доля морской воды в 2-5% почти не повлияет на изотопный состав воды (δ Dи δ^{18} O) в итоговом растворе, но при этом может быть причиной относительно низких концентраций бора в этих источниках (см. рис. 3б). Увеличение доли радиогенного стронция в термальных водах может быть и за счет растворения стронция из породы, измененной взаимодействием с морской водой. В этом случае анионный состав воды не должен заметно меняться. Весьма вероятно, что в случае Столбовских и Третьяковских источников причиной увеличения доли радиогенного стронция могут быть оба процесса.

Геохимия дренирующих водотоков и гидротермальный вынос магматических компонентов

Базисом дренирования о. Кунашир являются Тихий океан и Охотское море. Поверхностный сток с вулкана Менделеева осуществляется многочисленными ручьями, формирующимися на его склонах, с расходами от первых единиц до сотен литров в секунду. Основными водотоками, собирающими воду ручьев, дренирующих фумарольные поля и термальные источники, являются р. Лесная, руч. Лечебный и руч. Четверикова, несущие свои воды в Тихий океан. Столбовские и Третьяковские источники дренируются ручьями, впадающими в Охотское море (см. рис. 1). Химические составы вод ручьев в устье представлены в табл. 3. Все речные воды, за исключением р. Лесной, имеют близнейтральный рН и низкую минерализацию. Фоновые концентрации хлор- и сульфатионов в пресных ручьях (см. рис. 1, точка р15,) вдали от термальных полей весьма высокое, около 8 и 10 мг/л, соответственно. Это обусловлено влиянием океана и попаданием в осадки значительной доли океанического аэрозоля. Река Лесная собирает основную массу разгружающихся на склонах вулкана термальных вод. Измеренный в сентябре 2015 г. расход р. Лесная в устье составлял 1.1 м³/с при концентрации хлор-иона 90 мг/л и сульфатиона 79 мг/л. Следовательно, с учетом фоновых содержаний хлорид- и сульфат-ионов, ежесекундно в Тихий океан поступает 90 г хлора и 76 г сульфата, что в пересчете на тонны в сутки составляет 7.8 т/сут и 6.6 т/сут соответственно. Концентрации рассматриваемых компонентов в устье руч. Лечебный, дренирующего Восточное термальное поле, не превышают фоновых значений. Ручей Четверикова выносит фоновое количество хлора, но 2.3 т/сут сульфата. Источники Охотского побережья – Столбовские и Третьяковские – выносят, соответственно, 0.6 и 0.5 т/сутки хлора и 0.24 и 0.02 т/сут сульфата (т.е. меньше 10% и меньше 2% от общего выноса, соответственно), но, согласно полученным

данным, хлор (и сульфат) этих источников частично могут иметь морское происхождение и в общем выносе не учитываются.

Таким образом, общий гидротермальный вынос системой вулкана Менделеева составляет 7.8 т/сут Cl и 11.6 т/сут SO₄. Ошибка составляет не меньше 15% (ошибки определения расходов + аналитические ошибки + ошибка определения фонового содержания). Это значительно ниже, чем вынос серы и хлора гидротермальными системами вулканов о. Шиашкотан (70 т/сут SO₄ и 27 т/сут Cl [Kalacheva et al., 2015]) и в. Эбеко, о. Прамушир (148 т/сут SO₄ и 82 т/сут Cl [Kalacheva et al., 2016]).

Зная вынос анионов дренирующими водотоками, можно оценить расход и естественную тепловую мощность отдельных групп источников. Расход всех термальных источников, дренирующихся р. Лесной, в терминах наиболее минерализованной и горячей воды Верхнедокторских источников (1500 мг/л хлора, 87 °С) равен 54 л/с. С учетом фоновой температуры 7 °С, вынос тепла составляет 4275 ккал/с или 17.9 МВт. Расходы Столбовских и Третьяковских источников (волы с максимальной соленостью и температурой) составляют 6 л/с и 5 л/с, соответственно, что в сумме дает около 3 МВт естественной тепловой мощности. Таким образом, обшая естественная тепловая мошность гидротермальных систем вулкана Менделеева в 2015 г. без учета паровых выходов составляла около 21 МВт. Г.Н. Ковалев и Ю.Б. Слезин [1970]

оценили общий вынос тепла термальными водами (без паровых выходов) в 12.2 MBt, т.е. почти в два раза ниже.

Модель гидротермальной системы вулкана Менделеева

Из графиков Cl–SO₄ и Cl–В для трех основных типов термальных вод вулкана Менделеева (см. рис. 3) следует, что их состав сформирован на разных гипсометрических уровнях и разными способами. Такая зональность типична для многих вулкано-гидротермальных систем, как континентальных, так и островных. Наше представление о строении гидротермальной системы в. Менделеева сводится к следующему (рис. 8).

На самом нижнем уровне имеется резервуар Na–Cl вод, образованный, по-видимому, над системой магматических очагов, предшествующих развитию современной постройки вулкана, но все еще способных питать вышележащую гидротермальную систему теплом и веществом. Выше, уже в постройке вулкана, сформирован резервуар кислых Cl–SO₄ вод над молодым и активным магматическим очагом, возможно, ответственным за последний этап кальдерообразования [Абдурахманов и др., 2004]. Этот очаг продолжает дегазировать. Магматические газы SO₂ и HCl растворяются в воде, а CO₂ и H₂S в основном достигают поверхности, поскольку их растворимость

Рис. 8. Концептуальная модель гидротермальной системы вулкана Менделеева.

1 – изотермы с температурами в °C; 2 – инфильтрация морских и метеорных вод; 3 – потоки магматических и гидротермальных газов и зоны проницаемости; 4 – гидротермальный резервуар глубинных Na–Cl вод; 5 – скважина; 6 – термальные источники различных типов (см. текст) и сольфатары; 7 – типы вод; 8 – магматический очаг и магматическая питающая система.

в воде сравнительно невелика. SO₂ рекомбинирует в водном растворе с образованием SO_4^{2-} и H_2S_3 , и образующийся H₂S также достигает поверхности. Этот верхний резервуар стратифицирован, т.е. на каком-то гипсометрическом уровне имеется зона кипения, над которой формируется "паровая шапка", парогазовая смесь из которой по проницаемым зонам поднимается к поверхности, образуя сольфатары и водные и грязевые котлы сульфатного состава за счет окисления H₂S кислородом воздуха (Верхнеменделеевские источники). Эти воды являются классическим типом конденсатных вод ("фумарольные термы", по [Иванов, 1960]) или воды, нагретые паром (steam-heated water), по [Ellis, Mahon, 1977]. Вода разгружается на более низких уровнях, вынося магматические хлор и серу, другие компоненты, которые могут переноситься магматическими газами. Кроме того, вода верхнего резервуара частично нейтрализуется, растворяя вмещающую породу и вынося породообразующие элементы. Образующиеся источники (Нижнеменделеевские, Верхне- и Нижнедокторские) разгружаются в северо-восточном секторе постройки вулкана и выносят в Тихий океан основную массу растворенных магматических летучих. Еще ниже разгружаются нейтральные Na-Cl воды из нижнего резервуара. Существовавшие ранее источники Горячего Пляжа на Тихоокеанском берегу и источники Охотоморского побережья похожи по химическому составу и их вода – это в разной степени разбавленная вода нижнего гидротермального резервуара. В формировании состава воды этого резервуара принимают участие как метеорные, так и морские воды так же, как это имеет место на других вулканических островах Курильской гряды (Шиашкотан, Ушишир [Kalacheva et al., 2015; Таран и др., 1993]).

ЗАКЛЮЧЕНИЕ

Проведено комплексное геохимическое исследование поверхностных проявлений гидротермальной системы вулкана Менделеева на о. Кунашир, Курильские о-ва, на основании которого можно сделать следующие выводы.

1. Изотопные отношения гелия (³He/⁴He) в спонтанных и фумарольных газах примерно одинаковы и составляют от 5.3Ra до 5.6Ra, что несколько ниже средних значений для газов островных дуг (7 ± 1) Ra. Индикаторное отношение $CO_2/^3$ He, (1÷9) × 10¹⁰ типично для вулканических газов островных дуг.

2. Все отобранные газы характеризуются изотопно-облегченным углеродом метана ($\sim -40\%$) и температурами изотопного равновесия CO₂–CH₄, близкими к температурам, оцененным по газовым геотермометрам (около 200 °C).

3. В пределах постройки вулкана разгружается три основных типа термальных вод: нейтральные хлоридно-натриевые, кислые хлоридно-сульфатные и кислые сульфатные воды. Изотопный состав всех типов вод близок к составу локальных метеорных вод; часть сульфатных вод изотопно утяжелена на счет кинетического фракционирования при испарении.

4. Каждый из типов вод характеризуется специфическим распределением микрокомпонентов. Для сульфатных вод это распределение связано в основном с полным растворением вмещающей породы.

5. Изотопный состав растворенного стронция (⁸⁷Sr/⁸⁶Sr) в термальных водах варьирует в широких пределах от 0.7034 до 0.7052. Низкие значения близки к среднему для вулканических пород о. Кунашир и характерны для кислых сульфатных вод, а максимальные значения предполагают незначительное смешение с морской водой или вкладом стронция из пород, измененных с участием морской воды и измерены в береговых источниках с нейтральной Cl–Na водой.

6. Общий рассчитанный гидротермальный вынос магматических хлора и серы составляет 7.8 т/сут и 11.6 т/сут, соответственно. Естественный вынос тепла термальными водами (тепловая мощность) вулкана Менделеева оценивается в 21 МВт, что примерно в 2 раза выше оцененного в 1970 г.

Авторы искренне признательны Л. В. Котенко и К. В. Тарасову за неоценимую помощь при проведении полевых работ и сотрудникам Южно-Курильского заповедника за всестороннюю помощь во время нашего пребывания на о. Кунашир.

Работа выполнена при финансовой поддержке гранта РНФ № 15-17-20011.

СПИСОК ЛИТЕРАТУРЫ

Абдурахманов А.И., Разжигаева Н.Г., Рыбин А.В. Современная вулканическая и сейсмическая активность вулкана Менделеева // Вестник Сахалин. музея. 2004. Т. 10. С. 277–283.

Барабанов Л.Н. Гидротермы Курильской вулканической области. Т. 1. Петропавловск-Камчатский, 1976. 460 с.

Виноградов В.И., Вакин Е.А. Изотопный состав стронция термальных вод Камчатки // Докл. АН СССР. 1983. Т. 273. № 4. С. 965–968.

Войткевич Г.В., Кокин А.В., Мирошников А.Е., Прохоров В.Г. Справочник по геохимии. М.: Недра, 1990. 480 с. *Дуничев В.М.* Вопросы генезиса гидротерм вулкана Менделеева на острове Кунашир (Курильские острова) // Гидротермальные минералообразующие растворы областей активного вулканизма. Новосибирск: Наука, 1974. С. 46–51.

Жарков Р.В. Термальные источники Южных Курильских островов. Владивосток: Дальнаука, 2014. 378 с.

Иванов В.В. О происхождении и классификации современных гидротерм // Геохимия. 1960. № 5. С. 443–449.

Ковалев Г.Н., Слезин Ю.Б. Тепловая мощность вулкана Менделеева, о-в Кунашир //Бюлл. вулканол. станций. 1970. № 46. С. 46–50.

Лебедев Л.М., Зотов А.В., Никитина И.Б. и др. Современные процессы минералообразования на вулкане Менделеева (о-в Кунашир). М.: Наука, 1980. 176 с.

Мартынов Ю.А., Ханчук А.И., Кимура Дж. И. и др. Геохимия и петрогенезис четвертичных вулканитов Курильской островной дуги // Петрология. 2010. № 5. С. 1–25.

Мархинин Е.К. Выходы пара на о-ве Кунашир (Горячий Пляж) //Бюлл. вулканол. станций. 1958. № 28. С. 33–42.

Мархинин Е.К., Стратула Д.С. Гидротермы Курильских островов. М.: Наука, 1977. 212 с.

Пампура В.Д., Сандимирова Г.П. Геохимия и изотопный состав стронция в гидротермальных системах. Новосибирск: Наука, 1991. 119 с.

Сидоров С.С. Месторождение термальной воды и пара Горячий пляж (о. Кунашир) // Труды СахКНИИ СО РАН. 1962. № 12. С. 166–175.

Таран Ю.А. Геохимия геотермальных газов. М.: Наука, 1988. 168 с.

Таран Ю.А., Покровский Б.Г., Дубик Ю.М. Изотопный состав и происхождение воды в андезитовых магмах // Докл. АН СССР. 1989. Т. 304. № 2. С. 440–443.

Таран Ю.А., Гавриленко Г.М., Черткова Л.В., Гричук Д.В. Геохимическая модель гидротермальной системы вулкана Ушишир (Курильские о-ва) // Вулканология и сейсмология. 1993. № 1. С. 55–68.

Таран Ю.А., Знаменский В.С., Юрова Л.М. Геохимическая модель гидротермальных систем вулкана Баранского (о-в Итуруп, Курильские острова) // Вулканология и сейсмология. 1995. № 4/5. С. 95–115.

Chelnokov G. Interpretation of geothermal fluid compositions from Mendeleev volcano, Kunashir, Russia // Report of the United Nations University GTR. 2004. V. 5. P. 57–82.

Chudaev O., Chudaeva V., Sugimori R. et al. Composition and origin of modern hydrothermal systems of the Kuril island arc // Indian Journal of Marine Sciences. 2008. V. 37. P. 166–180.

Ellis A.J., Mahon W.A.J. Chemistry and Geothermal Systems. N. Y.: Fcad. Press, 1977. 392 p.

Faure G. Principles and Applications of Geochemistry. N. J.: Prentice-Hall, Upper Saddle River, 1998. 600 p.

Giggenbach W.F. Carbon-13 exchange between CO_2 and CH_4 under hydrothermal conditions // Geochim. et Cosmochim. Acta. 1982. V. 46. P. 159–165.

Giggenbach W.F. Redox processes governing the chemistry of fumarolic gas discharges from White Island, New Zealand // Appl. Geochem. 1987. V. 2. P. 143–161.

Giggenbach W.F. Geothermal solute equilibria. Derivation of Na-K-Mg-Cageoindicators // Geochim. et Cosmochim. Acta. 1988. V. 52. P. 2749–2765.

Giggenbach W.F. Chemical techniques in geothermal exploration // Application of Geochemistry in Geothermal Reservoir development. Rome: U. N. Inst. for Training and Res., 1991. P. 119–144.

Giggenbach W.F. Isotopic shifts in waters from geothermal and volcanic systems along convergent plate boundaries and their origin // Earth Planet. Sci Lett. 1992. V. 113. P. 495–510.

Giggenbach W.F., Goguel R.L. Collection and analysis of geothermal and volcanic water and gas discharges. New Zealand DSIR Chem. Division Report № 2387. 1989. 55 p.

Giggenbach W.F., Stewart M.K. Processes controlling the isotopic composition of steam and water discharges from steam vents and steam-heated pools in geothermal areas // Geothermics. 1982. V. 11. P. 71–80.

Giggenbach W.F., Garcia N.P., Londono A.C. et al. The chemistry of fumarolic vapor and thermal spring discharges from the Nevadodel Ruiz volcanic-magmatic-hydrothermal system. Colombie // J. of Volcanol. and Geotherm. Res. 1990. V. 42. P. 13–39.

Hilton D.R., Fischer T.P., Marty B. Noble gases and volatile recycling at subduction zones // Noble gases in cosmochemistry and geochemistry // Miner. Soc. Am. 2002. V. 47. P. 319–370.

Horita J. Carbon isotope exchange in the system CO_2-CH_4 at elevated temperatures // Geochim. et Cosmochim. Acta. 2001. V. 65. P. 1907–1919.

Kalacheva E., Taran Y., Kotenko T. Geochemistry and solute fluxes of volcano-hydrothermal systems of Shiashkotan, Kuril Islands // J. of Volcanol. and Geotherm. Res. 2015. V. 296. P. 40–54.

Kalacheva E., Taran Y., Kotenko T. et al. Volcano-hydrothermal system of Ebeko volcano, Paramushir, Kuril Islands: geochemistry and solute fluxes of magmatic chlorine and sulfur // J. of Volcanol. and Geotherm. Res. 2016. V. 310. P. 118–131.

Peiffer L., Taran Y., Lounejeva E. et al. Tracing thermal aquifers of El Chichon volcano–hydrothermal system (Mexico) with ⁸⁷Sr/⁸⁶Sr, Ca/Sr and REE // J. of Volcanol. and Geotherm. Res. 2011. V. 205. P. 55–66.

Sano Y., Wakita H. Geographical Distribution of ³He/⁴He Ratios in Japan: Implications for Arc Tectonics and

Incipient Magmatism // J. of Geophys. Res. 1985. V. 90. P. 8729–8741.

Taran Y.A. A method for determination of the gas—water ratio in bubbling springs //Geophys. Res. Lett. 2005. V. 32. L23403. http://dx.doi.org/10.1029/2005GL024547

Taran Y.A. Geochemistry of volcanic and hydrothermal fluids and volatile budget of the Kamchatka–Kuril subduction zone // Geochim. et Cosmochim. Acta. 2009. V. 73. P. 1067–1094.

Taran Y.A., Giggenbach W.F. Geochemistry of Light Hydrocarbons in Subduction-Related Volcanic and Hydrothermal Fluids // Society of Economic Geologists Special Publication. 2003. V.10. P. 61–74.

Taran Y., Zelenski M. Systematics of water isotopic composition and chlorine content in arc-volcanic gases // The Role of Volatiles in the Genesis, Evolution and Eruption of Arc Magmas. Geological Society, London, Special Publications. 2014. P. 410–432.