УДК 538.945; 549.02

ПОИСКИ СВЕРХПРОВОДЯЩИХ ФАЗ СРЕДИ МИНЕРАЛОВ ИЗ ПОРОД И РУД КУРИЛО-КАМЧАТСКОГО РЕГИОНА

© 2004 Г. П. Пономарев^{1, 2}, В. К. Павлюков², Л. П. Аникин¹, Р. Л. Дунин-Барковский^{1, 2}, В. И. Дядин³, А. И. Абдурахманов⁴, В. М. Чубаров¹

¹Институт вулканологии и сейсмологии ДВО РАН. Петропавловск-Камчатский, 683006; e-mail: ponvol@mail.iks.ru

²Камчатский государственный педагогический университет. Петропавловск-Камчатский, 683032; e-mail: kaffiz@kamgpu.kamchatka.ru

³Опытно-методическая сейсмологическая партия. Петропавловск-Камчатский, 683006 ⁴Институт морской геологии и геофизики ДВО РАН. Южно-Сахалинск, 693002

В статье обсуждаются перспективы поисков сверхпроводящих фаз среди природных соединений – минералов. Приводятся первые результаты измерений динамической магнитной восприимчивости ряда минеральных фаз. Делается вывод о целесообразности и перспективности этого направления исследований как для поиска сверхпроводящих фаз, так и улучшения их сверхпроводящих свойств.

В новейшей истории экспериментальных исследований явления сверхпроводимости можно выделить два переломных события. Первым является открытие в 1986 г. И. Беднорцом и К. Мюллером сверхпроводимости у соединения Ba-La-Cu-O с Tc ~ 35 К и создание в последующие годы на основе купратов подлинно высокотемпературных (Tc>Tкип. N₂=77.4 К) керамик и достижением в ртутных соединениях Tc~140 К (Гинзбург, 1997; Ципенюк, 1996; Шмидт, 2000). Вторым является находка в 2000 г. А. Акимицу сверхпроводящего (Тс~ 39 К) среднетемпературного (Тс>Ткип. Ne=27.1 К) соединения - MgB, (Nagamatsu et al., 2001). Находка высокотемпературных сверхпроводящих купратов (ВТСП-купратов) была обязана целенаправленным поискам сверхпроводящих фаз среди сложных окислов со структурой перовскита. Изменяли концентрации Ni³⁺, Fe⁴⁺, Cu²⁺, демонстрирующих сильный эффект Яна - Теллера (деформация структуры соединения при вырождении электронного состояния), а также Ва и La, подбирая промежуточную валентность Cu^{2+,3+} для создания ян-теллеровского полярона (Беднорц, Мюллер, 1988). Соединение MgB, было достаточно известным реактивом и выявление его сверхпроводящих свойств было случайностью и неожиданностью при поисках легирующих добавок для полу-чения ферромагнитных полупроводников. К настоящему времени свойство сверхпрово-димости с Тс в интервале от ~0.1К до 140-160К выявлено у многих веществ – чистых металлов, интерметаллических соединениях, в сложных двойных, тройных, четверных неорганических соединениях разного типа, органических сое-динениях, металлофуллеренах (фуллеренах С₆₀, допированных щелочными металлами, скан-дием и другими элементами) (Буздин, Була-евский, 1984; Елецкий, 2000; Ципенюк, 1996; Шмидт, 2000). Применение допирования и влияние давления позволило по ряду признаков выявить переход в сверхпроводящее состояние у ряда простых веществ, в обычных условиях этими свойствами не обладающих. Допированный алмаз, содержащий 4.9 x10²¹ см⁻³ атомов бора, переходит в сверхпроводящее состояние при Тс~4К (Ekimov et al., 2004); у лития при давлении выше 30 ГПа появляется сверхпро-водимость, достигающая значения Т_с=20К (ре-кордное для простых веществ) при увеличении давления до 48 ГПа (Shimizu et al., 2002); бор, будучи при обычных условиях полупроводником, при давлении ~160 Гпа имеет Тс =6К, увеличение давления до 250 Гпа приводит к росту Т_с до 11К (Eremets et al., 2001); железо при давлении 15 Гпа и Тс=2К перестает быть ферромагнитным и становится сверхпроводником (Shimizu et al., 2001). Были созданы, несмотря на конкуренцию различных видов упорядочения (ферро- и антиферромагнетизм, синглетная и редкая триплетная сверхпроводимости) магнитные сверхпроводники. Это слоистые гетероструктурные образования, состоящие из чередующихся ферромагнитных и сверхпроводящих слоев; кроме того, были синтезированы соединения, например UGe,, в которых сверхпроводимость и ферромагнетизм сосуществуют в однородной среде (Гинзбург, 1997; Изюмов и др., 2002; Овчинников, 2003; Фоминов и др., 2003). Основные усилия в экспериментальных исследованиях сверх-проводимости, с практической точки зрения, направлены на нахождение веществ с макси-мальными числовыми критическими значениями температуры, тока и магнитного поля. Как идеал, например, рассматривается создание сверхпроводников с Тс 300-400 К (Гинзбург, 2000). В настоящее время сложилась ситуация, когда купраты представляют собой явно выделенный класс сверхпроводников, однако механизм сверхпроводимости в купратах не ясен, а современное состояние теории не позволяет указать, какие соединения могут обладать сверхпроводящими свойствами, и вычислять их критические температуры (Гинзбург, 1997, 2000). Такое положение дел диктует стратегию поисков новых перспек-тивных ВТСП – фаз на основании существо-вания функциональных и корреляционных связей в триаде состав-структурасвойство. Исходя из сходства составов и подобия струк-тур, разнообразными методами исследуются электрические, магнитные, оптические, термодинамические и др. свойства Ті, Мп, Y, Ru, Hg, Tl, Bi - купратов, рутено-купратов, манганитов, бинарных и многокомпонентных борсодержащих фаз, химически или изоструктурно подобных дибориду магния (Изюмов и др., 2002; Медведева и др., 2002; Овчинников, 2002; Померанцева и др., 2002). Например, для купратов, начиная с 1986 г., синтезировано более 100 СП-и ВТСП-соединений и написано более 70 тыс. публикаций. Сегодня к числу наиболее общих свойств ВТСП-купратов можно отнести следующие их особенности: слоистость, сильная анизотропия физических свойств, дефицит кислорода относительно стехиометрии, основную роль в появлении сверхпроводимости предположительно играет медь-кислородная подсистема (Бобович, 1997; Гинзбург, 1997; Пономарев, 2002). Кристаллы ВТСП- купратов представляют собой сверхрешетку, состоящую из чередующихся блоков S (сверхпроводящий слой, содержащий одну или несколько СиО, – плоскостей), занимающих 20% кристалла, и блоков I (слой изолятора), занимающих 80% объема кристалла, и ведут себя как сборка из связанных между собой джозефсоновских контактов (слабая сверхпроводимость) (Пономарев, 2002). Диборид магния (MgB₂) имеет слоистую структуру, образованную упаковкой гексагональных атомных монослоев магния и графитоподобных сеток бора, сверхпроводящие свойства обязаны s - зонам бора (Медведева и др., 2002).

Создание обмоточных материалов с использованием ВТСП-купратов требует сегодня сложных технологических приемов и имеет ряд ограничений, связанных как с особенностями строения этих керамик (анизотропия свойств), так и отсутствием теории пиннинга в них, что обуславливает эмпирический подход к улучшению их токонесущей способности (Черноплеков, 2002). Для улучшения пиннинга магнитных вихрей и тем самым увеличения плотности критического тока используются различного рода и масштаба неоднородности в кристаллах (Диденко и др., 2002; Казин и др., 2001). В настоящее время выявлен достаточно большой набор эффективных центров пиннинга – дислокации, дислокационные ячейки, границы зерен, границы между сверхпроводниками, причем мелкие дефекты (кислородные вакансии, примесные атомы) при их большой концентрации могут действовать совместно, обеспечивая коллективный пиннинг (Шмидт, 2000).

По мнению академика В.Л. Гинзбурга (1977), сегодняшнее состояние теории и результатов экспериментальных исследований ВТСП- проводимости свидетельствует о целесообразности исследований этого явления в самых разных направлениях с непредвзятым подходом. Одним из таких экспериментальных направлений может быть поиск СП и ВТСП- свойств у природных химических соединений – минералов, образовавшихся, образующихся и существующих в разнообразных условиях (Земля, космические тела).

Сегодняшний кадастр минералов по раз-ным оценкам содержит от 4300 до 4700 мине-ральных видов, многие из которых включают в себя до 5-7 разновидностей. Список этот непрерывно пополняется ежегодными откры-тиями новых редких минеральных видов (от 10 до 30 шт. в год). Медьсодержащих фаз, с содер-жаниями Си от 90 до 0.5 весовых %, насчитывается ~560 минеральных видов, среди которых могут быть и весьма необычные, на-пример, найденные на Полярном Урале микрон-ные выделения йодосульфидов меди в зернах кобальтистого манганродонита (Силаев и др., 2001). Число борсодержащих минералов, с содержаниями бора от 25 до 0.5% вес. насчи-тывает ~230 минеральных видов. Для поисков СП-свойств у природных соединений, вслед-ствие химического и структурного подобия, несомненный интерес представляет ряд мине-ралов из группы перовскита и близкие к ним минералы ряда пирохлора и фергюсонит-эвксенитсамарскит, насчитывающие ~40 ми-неральных видов. Распределение минеральных видов природных соединений по 7 сингониям, несмотря на постоянный прирост числа мине-ралов за счет вновь открываемых, остается практически неизменным (эмпирическое обоб-щение Шафрановского), и первенство (в % от общего числа минеральных видов) прина-длежит моноклинной (~33%) и ромбической (~22%) сингониям (Урусов, 2002; Чесноков, 2000). У искусственных неорганических соеди-нений этого постоянства нет из-за роста числа высокосимметричных соединений, что по мнению (Урусов, 2002), связано с активными исследованиями и созданием синтетических перовскитоподобных соединений (сегнетоэлектрики, сверхпроводники), шпинелей (ферриты) и т.д. Кроме того, открыты структуры с осью 5-го порядка (Al₆Mn, Al₆₅Cu₂₀Fe₁₅) и др., получившие название икосаэдрических фаз или квазикристаллов (Shectman et al., 1984), среди них были синтезированы фазы, обладающие периодичностью только в одном кристаллографическом направлении, получившие название диагональных квазикристаллов (Tsai et al., 1989). Эти фазы могут представлять существенный интерес для экспериментальных исследований сверхпроводимости.

Структурно ВТСП-купраты относятся к ромбической сингонии, что позволяет порядка 1000 минеральных видов, объединяемых в эту сингонию, рассматривать как перспективные на наличие СП-свойств, однако число этих фаз можно сократить. В природных соединениях среди видов симметрии наибольшим распространением пользуется планаксиальный вид, который в моноклинной сингонии пред-ставлен призматическим классом (2/m), в ром-бической – ромбо-дипираимидальным классом (2/m 2/m 2/m) и в кубической - гексоктаэдри-ческим (m'3m) классом (Шафрановский и др., 1990), каждый из этих классов включает уже 250 - 500 минеральных видов. Структурно перовскит относится к ромбодипирамидаль-ному классу в группе Pnma, что позволяет су-зить число минералов до ~30 видов и с учетом химического состава (наличие в составе Си, В и в ряде признаков) перспективными на обнаружение СП-свойств могут быть названы следующие минералы: антофиллит [Mg Fe²⁺)₇ (Si₄O₁₁)₂ (OH)₂] и холмквистит [Li(Mg,Fe²⁺), (Fe₃Al), (Si₄O₁₁), (OH),]; тефроит $[Mn,SiO_4]$ и монтичеллит $[(CaMg)SiO_4];$ роуландит [(Y, Ce, La), Fe, (Si,O,)F,]; сульфоборит $[Mg_2(B_2O_5) (SO_4) 4H_2O];$ керстенит $[PbSeO_4];$ салезит [Cu(JO₂)OH]; псевдокотунит [PbCl₂ KCl]; гладит [CuPbBi₅S₀]; авогадрит [KBF₄]; монтроидит [HgO]. Многие из этих минералов являются породообразующими и широко распространены во многих типах пород, другие являются редкими, и третьи, например, псевдокотунит и авогадрит, являясь вулканическими возгонами, разрушаются после прекращения фумарольной деятельности или при смене ее режима. В современных отложениях из действующих фумарол на шлаковых конусах БТТИ (Большое трещинное Толбачинское извержение 1975-76 гг.) Л.П. Вергасовой и Е.К. Серафимовой (Большое..., 1984; и др.) с коллегами открыт ряд новых минералов: оксихлориды – меланоталлит (Cu_2OCl_2) , пономаревит [K₄Cu₄OCl₁₀]; оксопийпит [K₄Cu₄O₂(SO₄)₄MeCl], сульфаты _ камчаткит [KCu₃OCl(SO₄)₂]; оксоселениты – ильинскит [NaCu₅O₂(SeO₃)₂Cl₃], георбокиит [Cu₅O₂(SeO₂)₂Cl₂]. Составы приведенных выше недавно открытых минералов из фумарольных отложений на шлаковых конусах БТТИ очень схожи с составами довольно большой группы СП-соединений, в которых присутствуют галогены (например: (Ca,K),CuO,Cl,(Tc - 24 K); Ca, _xNa_xCaCu₂O₄Cl₂ (Tc - 49 K) (Аншукова и др., 1997). В этих СП-соединениях эпикальный кислород заменен галогенами (хлором или фтором), и для объяснения сверхпроводимости в этом случае привлекается экситонная модель сверхпроводимости Гинзбурга в варианте эк-ситонов малого радиуса (Аншукова и др., 1997). Среди указанных выше борсодержащих минеральных видов перспективными для поисков СПсвойств могут быть следующие: людвигит $[(Mg,Fe^{2+})Fe^{3+}(BO_3)O_2],$ принадлежащий к

дипирамидальному классу ромбической син-гонии, суэнит $[Mg_2B_2O_5]$, котоит $[Mg_3B_2O_6]$, кальциоборит $[CaB_2O_4]$, структурная принад-лежность аналогична людвигиту, изоморфный ряд (?)- бехаерит $[Ta,NbBO_4]$, шиавинотоит $[Nb,TaBO_4]$, трембонит $[(Mg,Fe^{2+})_3B_7O_{13}Cl]$, коржинскит $[CaB_2O_4HH_2O]$, синхалит $[Mg, Al(BO_4)]$, данбурит $[CaB_2(Si_2O_7)O]$, ашарит $[MgHBO_3]$, еремеевит $[Al(BO_3)]$, сассолин $[B(OH)_3]$. Интересные результаты может принести допи-рование этих минералов медью, ртутью и другими элементами.

Выше было показано, что у простых веществ давление и допирование могут вызывать появление сверхпроводимости. Для ряда ВТСПкупратов давление позволило получить рекордные значения Тс (160 К при давлении 30 ГПа), а совместное влияние давления и допирования позволяют, с одной стороны, повышать Тс, с другой - изучать влияние давления на механизм сверхпроводимости (Аксенов, 2002; Антипов и др., 1999). Допирование позволяет изменять влияние давления - сжимаемость от изотропной до локально - анизотропной; так, связи Си-О2, в зависимости от концентрации кислорода и давления, меняют свою длину, что ведет к локальному изменению слоев CuO₂, обеспечивающих сверхпроводимость (Аксенов, 2002; Антипов, 1999). Для понимания механизма сверхпроводимости в плоскостях СиО, полезными могут быть исследования минерала георгбокиита, в котором существуют переходные формы координации меди между октаэдрической (6-ая) и тригональнодипирамидальной (5-ая) (Кривовичев, Для изучения влияния давления, 1999). допирования и поиска СП-минеральных фаз полезными могут оказаться исследования метастабильных фаз из ксенолитов и метаморфических пород различных фаций глубинности, в которых давление как гидростатическое, так и однонаправленное зафиксировано хими-чески, путем изоморфных замещений, благо-даря длительности геологических процессов. Равновесность этих замещений в различных минеральных фазах позволяет оценивать пале-одавления (Перчук, Рябчиков, 1976). Напри-мер, интересными могут оказаться исследования по допированию медью, барием, ртутью, РЗЭ-элементами минералов группы дистена (дистен, андалузит, силлиманит) и близких им по структуре муллита и дюмортье-рита, относящихся к ромбодипирамидальному классу И, зачастую, образовавшихся в условиях высоких давлений. В этих минералах коорди-национное число по кислороду для алюминия меняется и имеет значения 4, 5, 6. Представлять интерес могут и исследования по допированию подобными элементами хризоберилла [BeAl₂O₄], также относящегося к ромбодипирамидаль-ному классу.

Синтезированные к настоящему времени ВТСПкупраты обладают низкими значениями критического тока, что объясняется плохим пиннингом магнитных вихрей в объеме этих СП-материалов. Используются различные под-ходы (создание дефектов, границ зерен, упоря-доченность и т.д.) (Волошин и др., 2003; Казин и др., 2002; Перышков и др., 2002; Черно-плеков, 2003) для увеличения плотности кри-тического тока. Практически все природные минералы, с учетом условий их образования, в первую очередь термической истории, содер-жат в своем объеме разного рода и размера вклю-чения и дефекты. Для многих из них, являю-щихся многокомпонентными химическими соединениями, характерны такие свойства, как изоморфизм, нестехиометрия, переходы по-рядок-беспорядок, изотопное фракциони-рование, спинодальный распад, двойникова-ние. Механическое полисинтетическое двойни-кование рудных и нерудных минералов является характерным признаком для пород из зон разломов разного ранга. Двойникование же в металлических кристаллах способствует возникновению сверхпроводимости в окружающем двойниковую плоскость металле, концентрация же двойниковых плоскостей, при расстояниях между ними < 100 Е, способствует увеличению Тс (Хлюстиков и др., 1988). Это делает интересным поиск сверхпроводящих фаз в породах, подвергшихся активной тектонической переработке.

Перечисленные выше особенности мине-ралов, в зависимости от условий формирования породы, слагающей то или иное геологическое тело, могут быть постоянными в объемах, исчисляемых кубическими километрами, но могут испытывать резкие изменения и на расстояниях мм – см. Кроме того, некоторые минералы, в отличие от керамик, обладают такими технологическими свойствами, как пластичность и ковкость, что, при наличии СП-свойств, может сделать их весьма перспек-тивными.

Наличие всех этих свойств у минералов позволяет надеяться на нахождение СП-соединений среди них, а исследования могут оказать помощь в целенаправленном улучшении технологических и электромагнитных характеристик ВТСП-материалов.

Выше мы обсуждали возможности существования СП-свойств у минералов земных пород. По мнению (Гинзбург, 1997), существование сверхпроводимости в звездах и больших плане-тах не слишком велико. Однако, нельзя исклю-чить наличия этого свойства у минералов из кометных ядер, астероидов, метеоритов и у частиц космической пыли из газово-пылевых облаков, что может привести к существованию у этих тел и частиц в космическом пространстве магнитных полей, благодаря незатухающим сверхпроводящим токам из-за эффекта Мейс-снера при взаимодействии с ранее существовавшими магнитными полями. Наличие маг-нитных полей у всех этих частиц и тел могло, например, вызвать быстрое комкование прото-планетного материала при формировании сол-нечной системы. С этих позиций интересным является изучение минеральных фаз из различ-ных классов метеоритов и космической пыли на наличие СП-свойств.

Качественная проверка минералов на наличие ВТСП

Была собрана и изучена коллекция из 300 образцов, представленных различными магматическими породами, рудами, рудными концентратами, шлиховым материалом и т.д. Проведено ~4500 минералоопределений при Ткип N₂=77.4 К. Диагностика проводилась по эффекту левитации сверхпроводника, находящегося при T<Tc в сильно неоднородном постоянном магнитном поле. Сборкой ИЗ обычного и РЗ магнитов было сформировано воронкообразное постоянное магнитное поле с напряженностью 3-4 Кэ, позволяющее полу-чать этот эффект с помощью фрагмента (объе-мом ~0.5 см³) керамики YBa₂Cu₃O_{7-х}, (Tc=94 К) при азотных температурах. Положительный результат среди исследованных минеральных фаз не получен.

Измерение динамической магнитной восприимчивости

Динамическую магнитную восприимчивость $\chi = \chi' - i\chi''$, как функцию температуры исследуемого образца, определяют с помощью установки, схема измерительного блока которой изображена на рис. 1.

Измерения проводились в переменном магнитном поле с применением дифферен-циальной схемы подключения приемных кату-шек ПК₁ и ПК₂. Исследуемый образец сначала охлаждали до температуры ~20 К. Затем, в процессе естественного нагревания образца, проводилось измерение магнитной воспри-имчивости.

Измерительный блок экспериментальной установки работает следующим образом. Во внешнюю возбуждающую катушку ВК, с последовательно соединенной нагрузкой, от генератора через усилитель подается переменный ток. Этот ток измеряется путем измерения падения напряжения на нагрузочном сопротивлении. Величина этого сопротивления имеет два значения – большое сопротивление на малый ток и, соответственно, на малое магнитное поле возбуждающей катушки и малое сопротивление на большое магнитное поле. Значение этих сопротивлений подбирается так, чтобы можно было менять напряженность поля в 10 раз. Температура измеряется с помощью двух датчиков (полупроводниковых или на основе термопар) Т, и Т,.

Рис. 1. Схема измерительного блока. BK – возбуждающая катушка; $n\kappa_1$ и $n\kappa_2$ – приемные катушки; T_1 и T_2 – датчики температуры; $O\delta$ – исследуемый образец; y(k) – выход приемных катушек; v_1 и v_2 – выход датчиков температуры; $\sim w$ – вход возбуждающей катушки.

Две внутренние приемные катушки ПК, и ПК, соединены встречно. Разностная э.д.с. от приемных катушек идет на вход двухканального фазочувствительного нановольтметра с высоким входным сопротивлением. Нановольтметр синхронизируется генератором и из принимаемого сигнала выделяет синусоидальные составляющие (основная частота): синфазную у, и противофазную у,. Эти составляющие, а также напряжения с термодатчиков регистрируются компьютером, с помощью которого производится обработка результатов эксперимента.

Калибровка измерительной системы проводилась следующим образом. Сначала проводили измерения с пустым держателем (без эталонного образца) в требуемом режиме (с заданной напряженностью магнитного поля и в заданном интервале температур). Было определено, что y₁(d) и y₂(d) держателя прямо пропорциональны напряженности магнитного поля катушки ВК и, следовательно, току в этой катушке. Поэтому достаточно было проводить калибровку при одной напряженности поля. Затем в держатель помещали эталонный обра-зец таким образом, чтобы его центр совпадал с центром одной из приемных Калиб-ровку проводили катушек. по высококачественному эталонному образцу, изготовленному в форме цилиндра с отношением высоты к диаметру равным ~7. Цилиндр помещался параллельно магнитному полю возбуждающей катушки ВК. Принималось, что при низкой температуре и слабом магнитном поле последнее полностью выталкивается из образца и объемная воспри-имчивость равна $\chi 2 = -1/(4\pi)$; $\chi 3 = 0$. Затем измеряли соответствующие напряжения y₁(s) и y₂(s) держателя с эталонным образцом. Опре-деляли сигналы от образца

 $y_1(k) = y_1(s) - y_1(d); y_2(k) = y_2(s) - y_2(d).$

Коэффициент пересчета определяли по формуле

 $K = VH_0 / [4\pi \{ (y_1(k)_2 + y_2(k)_2) \}^{1/2})(1-N)],$

где V – объем образца, N – размагничивающий фактор ($_0.03$ для конкретного образца YBa₂Cu₄O₈, Tc = 80 K), H₀ – амплитуда переменного магнитного поля.

Фазовый сдвиг а (отставание тока в катушке ВК от напряжения на генераторе, по которому велась синхронизация нановольтметра) опре-деляли по формуле

$tg\alpha = y_1(k)/y_2(k)$.

Фазовый сдвиг а получался равным около 8 град. и 30 град. (для большого и малого нагрузочных сопротивлений соответственно).

При проведении измерения произвольного образца аналогично получали сигналы $y_1(k)$ и $y_2(k)$, проводили пересчет с учетом фазового сдвига по формулам

$$y_{01}(k) = y_1(k)\cos\alpha - y_2(k)\sin\alpha;$$

 $y_{02}(k) = y_2(k)\cos\alpha + y_1(k)\sin\alpha$

и определяли удельную восприимчивость по формулам

 $\chi 2 = y_{02}(k)K/(H0m); \chi 3 = y_{01}(k)K/(H_0m),$

где т – масса образца (мнимая $\chi 3$ и вещественная $\chi 2$ части меняются местами, так как принимается, что э.д.с. в приемных катушках ПК₁ и ПК₂ отстает на $\pi/2$ от мгновенной намагниченности образца).

Гарантированная чувствительность измерительной системы составляет 0.00002 см³/г. Поскольку исследовались смеси минералов, то, как показывают расчеты, для надежного обнаружения СП фазы, ее массовое содержание в

исследуемой смеси не должно быть менее 100 мг при общей массе смеси не менее 10 г.

Результаты исследований

В процессе экспериментальных исследований была измерена динамическая магнитная восприимчивость 41 образца (материал представлен поликристаллическими образцами и поликристаллическими полиминеральными агрегатами) при температурах от 20 К до 120 К и для некоторых образцов - до 300 К. Напряженность магнитного поля изменялась в пределах 1 – 10 эрстед. Проводились измерения восприимчивости смесей различных химических соединений, обладающих различными значениями магнитной восприимчивости. Очевидно, что получаемое в эксперименте значение магнитной восприимчивости будет зависеть от массового содержания в смеси того или иного магнетика. Как показывают расчеты, надежное определение в смеси магнетиков сверхпроводящей фазы возможно в случае, если ее массовое содержание составит не менее 1% массы исследуемого образца.

Халькозин – борнит

На рис. 2 и 3 представлена характерная температурная зависимость магнитной восприимчивости антиферромагнетика вблизи крити-ческой температуры T_N . Температура T_N – точка Нееля. При $T_N \sim 35$ К наблюдается переход из парамагнитного в антиферромагнитное сос-тояние. Ход кривой восприимчивости в зави-симости от температуры характерен для поли-кристаллического парамагнетика.

В интервале Т от 40 К до 80 К восприимчивость парамагнетика подчиняется закону Кюри – Вейсса

$$\chi = C/(T - \theta).$$

Температура θ (по данным эксперимента) лежит в интервале от 49 \pm 5 К.

Колумбит

Колумбит - типичный представитель антиферромагнетика. В исследуемом интервале температур зависимость $\chi(T)$ описывается законом Кюри – Вейсса. Это означает, что в данной области температур этот минерал проявляет себя как парамагнетик (антиферромагнетик в парамагнитной области). По значению $\chi(T)$ на графиках (рис.4, 5) видно, что точка Нееля меньше 20 К. Величина обратная $\chi(T)$, в ука-занной на графиках области температур, опи-сывается формулой

$$1/\chi = T/C - \lambda$$
,

Рис. 2. Вещественная часть $\chi'(T)$ динамической восприимчивости для халькозин – борнита. При T > 40К – парамагнетик; при T < 35 К – антиферромагнетик.

Рис. 3. Обратная температурная зависимость $1/\chi'(T)$ вещественной части динамической восприимчивости для халькозин – борнита

здесь $\lambda = \theta$ /С. По данным эксперимента имеем $\lambda = -4428.6$ г/см³ и С= 0.007 К см³/г. Отрицательное значение величины λ свидетельствует о том, что данный минерал в интервале температур от 20 К до 120 К обладает устойчивыми парамагнитными свойствами.

«Ренеит»

Исследованный образец представляет собой фрагмент метасоматической породы с рассеянной и прожилковой молибденит-рениитовой минерализацией с современных фумарольных площадок активного вулкана, в дальнейшем условно называемый "рениитом".

В интервале температур превышающих 80 К образец, представляет собой парамагнетик. В температурном интервале ниже 80 К он ведет себя как антиферромагнетик (рис. 6). Переход в

антиферромагнитное состояние происходит при температуре Т ~60 К (рис. 7).

На рис. 8 показан ход кривой мнимой части магнитной восприимчивости χ 3, характери-зующей потери электромагнитной энергии в веществе. При Т

Рис. 4. Вещественная часть $\chi'(T)$ динамической восприимчивости для колумбита. В указанном интервале температур $\chi'(T)$ описывается законом Кюри – Вейсса.

Рис. 5. Обратная температурная зависимость вещественной части динамической восприимчивости $1/\chi'(T)$ для колумбита.

~60 К наблюдается резкий максимум. Это свидетельствует о значительном поглощении ЭМ энергии в интервале 50–70 К. Это значение температуры для данного мине-рала и будет точкой Нееля – температурой пе-рехода от парамагнитного состояния к анти-ферромагнитному. По полученным экспери-ментальным данным этот образец относится к поликристаллическим антиферромагнетикам.

Астрофиллит

Графики температурной зависимости динамической магнитной восприимчивости для астрофиллита представлены на рис. 9 и 10.

Для вещественной и мнимой частей маг-нитной восприимчивости заметен резкий мак-симум в районе Т ~31К – 34К, что позволяет предполагать наличие сверхпроводящих свойств.

«Метеорит»

Исследуемый образец представлен поликристаллическим агрегатом железного метеорита.

Рис. 6. Вещественная часть χ' , (T) динамической восприимчивости для «рениита».

Рис. 7. Обратная температурная зависимость 1/х', для «рениита».

Как видно на графиках (рис. 11), χ^2 и χ^3 практически не изменяются в интервале температур от 20К до 100К.

Турмалин

Рис. 8. Температурная зависимость мнимой части χ "(T) динамической восприимчивости для «рениита».

На рис. 12, 13 видно, что отчетливо наблю-даются две области для χ^2 где данный минерал проявляет себя как парамагнетик: это область температур T=125K – 160K и область T=22 K–90K. В этих областях зависимость χ' от тем-пературы подчиняется закону Кюри – Вейсса. Как показывают расчеты, для высокотемпе-ратурной области постоянная С равна 0.209K см³/г и параметр λ =-624.71 г/см³. Для низкотемпературной области те же параметры имеют значения C=0.043 K см³/г и λ =-2315 г/см³. Интересно отметить, что вблизи точки с T \sim 110 К происходит переход минерала в антифер-

Рис. 9. Температурная зависимость вещественной части χ' (I) динамической восприимчивости для астрофиллита.

Рис. 10. Температурная зависимость мнимой части χ "(T) динамической магнитной воспри-имчивости для астрофиллита

ромагнитное состояние, а затем при Т ~90 К обратно в парамагнитное. При этом, как сви-детельствуют данные по мнимой составляющей магнитной восприимчивости χ3, в области температур Т ~90К– 110К не происходит потерь электромагнитной энергии. Что, в общем, объяс-нимо, поскольку турмалин - хороший диэлектрик.

Выводы

1. Вышеприведенный обзор и первые экспериментальные данные позволяют полагать

Рис. 11. Температурная зависимость вещественной $\chi'(T)$ и мнимой $\chi''(T)$ частей динамической восприимчивости для агрегата железного метиорита.

реальными находки СП и ВТСП- фаз среди природных самородных элементов, интерметал-лических соединений и более сложных, разно-образных химических соединений – **минералов**.

Рис. 13. Обратная температурная зависимость $1/\chi^{2}(T)$ для турмалина.

2. Систематические экспериментальные исследования разнообразных минеральных видов с использованием влияния допирования, гидростатического и однонаправленного давлений возможно позволят выявить новые классы веществ и структур, обладающих СП-свой-ствами в широком диапазоне условий.

3. Дальнейшие исследования образцов "рениита" и астрофиллита позволят выявить минеральные фазы, обладающие СП-свойствами.

Благодарности. Авторы выражают свою признательность проректору по научной работе КГПУ проф. Е.Б. Весна за понимание и неформальную помощь в организации исследований, а также проф. Я. Г. Пономареву (МГУ, физфак) и проф. П. Е. Казину (МГУ, химфак) за помощь в изучении минералов.

Список литературы

Аксенов В.Л. Нейтронография купратных высокотемпературных сверхпроводников // Успехи физических наук. 2002. Т.172. № 6. С. 701-705.

Антипов Е.В., Путилин С.Н., Абакумов А.М. и др. Нейтронографические исследования структур сверхпроводников HgBaCuO_{4+d} и HgBa₂CuO₄F_d // Тез. докл. XIV Международного совещания по ренгенографии минералов. Санкт-Петербург, 1999. С. 159-160.

Аншукова Н.В., Головашкин А.И., Иванова Л.Е., Русаков А.П. ВТСП с эпикальными галогенами вместо кислорода // Успехи физических наук. 1997. Т. 167. № 8. С. 887-892.

Беднорц И.Г., Мюллер К.А. Оксиды перовскитного типа – новый подход к высокотемпературной сверхпроводимости // Успехи физических наук. 1988. Т. 156. С. 323–346.

Бобович Я.С. Сверхпроводимость купратов – взгляд на некоторые спектроскопические и структурно- химические аспекты проблемы // Успехи физических наук. 1997. Т. № 9. С. 977- 999.

Большое трещенное Толбачинское извержение / Отв. ред. С.А. Федотов. М.: Наука, 1984. 637 с.

Буздин А.И., Булаевский Л.Н. Органические сверхпроводники // Успехи физических наук. 1984. Т. 144. № 3. С. 415-437.

Волошин И.Ф., Емельянов Д.А., Климовский С.О. и др. Влияние условий синтеза на свойства ртутьсодержащих сверхпроводящих купратов Hg_{1-X} Pb_x Ba₂-ySryCa₂Cu₃)₈+ d // Докл. РАН. 2003. Т. 392. № 6. С. 779-782.

Гинзбург В.Л. Сверхпроводимость и сверхтекучесть (что удалось и чего не удалось сделать) // Успехи физических наук. 1997. Т. 167. № 4. С. 429-454. *Гинзбург В.Л.* Сверхпроводимость: позав-чера, вчера, сегодня, завтра // Успехи физичес-ких наук. 2000. Т. 170. № 6. С. 619-630.

Диденко К.В., Перышков Д.В., Гудилин Е.А. и др. Особенности локальной структуры квазикубических РЗЭ-бариевых купратов Nd_{1+x} Ba_{2-x} (CuO_{0,97} Fe⁵⁷_{0,03}) ₃O_z (x=0,06) // Докл. РАН. 2002. Т. 387. № 3. С. 343-348.

Елецкий А.В. Эндоэдральные структуры // Успехи физических наук. 2000. Т. 170. № 2. С. 113-142.

Изюмов Ю.А., Прошин Ю.Н., Хусанов М.Г. Конкуренция сверхпроводимости и магнетизма в гетероструктурных феррамагнетик/сверхпроводник // Успехи физических наук. 2002. Т. 172. № 2. С. 119-154.

Казин П.Е., Зайцев Д.Д., Третьяков Ю.Д. Легирование сверхпроводящего материала на основе Bi₂Sr₂CaCu₂ О_{8+х} РЗЭ- и Se- содержащими оксидами // Докл. АН. 2002. Т. 385. № 3. С. 353-358.

Казин П.Е., Карпов А.С., Третьяков Ю.Д., Янзен М. Топохимические превращения в системе Bi₂Sr₂CaCu₂O_{8+d} - SrSnO₃ // Докл. РАН. 2001. Т. 378. № 5. С. 644-646.

Кривовичев С.В. Геометрия и энергия пятерной координации Cu^{2+} в природных и синтетических кислородных соединениях меди // Тез. докл. к 1X съезду минералогического общества при РАН. Санкт-Петербург, 1999. С. 306-307.

Медведева Н.И., Медведева Ю.Е., Иванов-ский А.Л. Электронное строение трехкомпонент-ных борсодержащих фаз YCrB₄, Y₂ReB₆, и MgC₂B₂ // Докл. РАН. 2002. Т. 383. № 1. С. 80-83.

Овчинников С.П. Экзотическая сверхпроводимость и магнетизм в рутенатах // Успехи физических наук. 2003. Т. 173. № 1. С. 29-50.

Перчук Л.Л., Рябчиков И.Д. Фазовое соответствие в минеральных системах. М.:, Недра, 1976. 286 с.

Перышков Д.В., Гудилин Е.А., Макарова М.В. и др. Динамика катионного упорядочения в сверхпроводящей фазе NbBa₂Cu₃O₇ // Докл. РАН. 2002. Т. 387. № 4. С. 491-493.

Померанцева Е.А., Иткис Д.М., Пресняков И.А. и др. Локальная структура каркасных манганитов В₆ $Mn_{24}O_{48}$ и Са Mn_7O_{12} // Докл. РАН. 2002. Т. 387. № 2. С. 207-212.

Пономарев Я.Г. Туннельная и андреевская спектроскопия высокотемпературных сверх-проводников // Успехи физических наук. 2002. Т. 172. № 6. С. 705-711.

Силаев В.И., Зайнуллин Г.Г., Филиппов В.Н., Янулова А.А. Экспериментальное моделирование образования иодосульфидов в природе // Докл. РАН 2001. Т. 379. № 5. С. 662–665.

Урусов В.С. Принцип минимума структурной диссимметрии и его нарушение редкими новыми минералами // Докл. РАН. 2002. Т. 386. № 3. С. 379 – 383.

Фоминов Я.В., Куприянов М.Ю., Фейгельман М.В. Комментарий к обзору Ю.А. Изюмова, Ю.Н. Прошина, М.Г. Хусейнова «Конкуренция сверхпроводимости и магнетизма в гетероструктурах ферромагнетик/сверхпроводник» // Успехи физических наук. 2003. Т. 173. № 1. С. 113 – 115.

Хлюстиков И.Н., Буздин А.И. Локализованная сверхпроводимость в двойниковых металлических кристаллах // Успехи физических наук. 1988. Т. 135. № 1. С. 47–88.

Черноплеков Н.А. Состояние работ по сильноточной прикладной сверхпроводимости // Успехи физических наук. 2002. Т. 172. № 6. С. 716-722.

Чесноков Б.В. Ромбическая стабильность в симметричных распределениях кристаллов // Докл. РАН. 2000. Т. 374. № 4. С. 532–533.

Ципенюк Ю.М. Физические основы сверхпроводимости. М.: Из-во МФТИ, 1996. 93 с.

Шафрановский И.И., Шафрановский Г.И. Законы согласованности симметрии и статис-тики минералов во Вселенной // Докл. РАН. 1990. Т. 315. № 1. С. 182 – 185.

Шмидт В.В. Введение в физику сверхпроводников. М.: МЦНМО, 2000. 402 с.

Ekimov E.A., Sidorov V.A., Bauer E. et al. Superconductivity in diamond // Nature. 2004. V.428. P. 542–545.

Eremets M., Nakagawa N., Mao H., Hemley K. Superconductivity in boron // Science. 2001. V. 293. P. 272-274.

Eremets M., Nakagawa N., Mao H., Hemley K. Superconductivity in boron // Science. 2001. V. 293. P. 272–274.

Nagamatsu J., Nakagawa N., Muranaka T. et al. Superconductivity ad 39K in magnesium diboride // Nature. 2001. V. 410. P. 63–64.

Shectman D., Dlech I., Gratias D., Cahn J.W. Metallic phase with longrenge orientation order and no traslational symmetry // Phys. Rev. Lett. 1984. V. 53. P. 1951–1953.

Shimizu K., Kimura T., Furomoto S. et al. Superconductivity in non-magnetic state of iron an der pressure // Nature . 2001. V. 412. P. 316–318. Shimitzu K., Ishikawa M., Tanao D. et al. Superconductivity in compressed litium at 20K // Nature. 2002. V. 419. P. 597–599.

Tsai A.P., Inoue A., Masumoto T. New decagonal Al - Ni - Fe and Al - Ni - Co alloys prepared by liquid quenching // Mater Trans/ JIM. 1989. V. 30. P. 150 - 154.

Search of superconductive phases in minerals of rocks and ores of Kyril-Kamchatka Region

G. P. Ponomarev^{1, 2}, V. K. Pavlyukov², L. P.Anikin¹, R. L. Dunin-Barkovsky^{1, 2}, V. I. Dyadin³, A. I. Abdyrachmanov⁴, V. M. Chubarov¹

¹Institute of Volkanology and Seismology FED RAS, Petropavlovsk-Kamchatsky, 683006. e-mail: ponvol@mail.iks.ru ²Kamchatka state pedagogical University, Petropavlovsk-Kamchatsky, 683032. e-mail: kaffiz@kamgpu.kamchatka.ru ³Experimental methodical seismological group, Petropavlovsk-Kamchatsky, 683006. ⁴Institute of seageolody and geophysics FED RAS, Yuzhno-Sakhalinsk, 693002

The given article discusses the perespectives of superconductive phases in natiral combain – **minerals**. The first results of dinamic magnetic receptivity measurments of some mineral phases are given in the article. This direction of investigation is considered necessary a perspective both for the search of superconductive phases and improvement of their superconductivity properties.